Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stress-strain tensors

HOOKE S LAW, STRESS-STRAIN TENSORS, AND PRINCIPAL-AXIS TRANSFORMATIONS... [Pg.44]

The equation of momentum conservation, along with the linear transport law due to Newton, which relates the dissipative stress tensor to the rate of strain tensor = 1 (y. 4, and which introduces two... [Pg.722]

The inverse of the Cauchy-Green tensor, Cf, is called the Finger strain tensor. Physically the single-integral constitutive models define the viscoelastic extra stress Tv for a fluid particle as a time integral of the defonnation history, i.e. [Pg.87]

In generalized Newtonian fluids, before derivation of the final set of the working equations, the extra stress in the expanded equations should be replaced using the components of the rate of strain tensor (note that the viscosity should also be normalized as fj = rj/p). In contrast, in the modelling of viscoelastic fluids, stress components are found at a separate step through the solution of a constitutive equation. This allows the development of a robust Taylor Galerkin/ U-V-P scheme on the basis of the described procedure in which the stress components are all found at time level n. The final working equation of this scheme can be expressed as... [Pg.136]

Note that convected derivatives of the stress (and rate of strain) tensors appearing in the rheological relationships derived for non-Newtonian fluids will have different forms depending on whether covariant or contravariant components of these tensors are used. For example, the convected time derivatives of covariant and contravariant stress tensors are expressed as... [Pg.263]

Let C i be a bounded domain with a smooth boundary L, and n = (ni,n2,n3) be a unit outward normal vector to L. Introduce the stress and strain tensors of linear elasticity (see Section 1.1.1),... [Pg.56]

The stress and strain tensors aij u),Sij u) are defined by the Hooke and Cauchy laws... [Pg.61]

We assume that the physical parameters of the lower plate coincide with those of the upper plate in particular, the stress tensors and strain tensors of the lower plate satisfy (3.44). The thickness of the lower plate is 2s. The following conditions are considered at the external boundary T ... [Pg.187]

The functions v,aij,Sij v) represent the velocity, components of the stress tensor and components of the rate strain tensor. The dot denotes the derivative with respect to t. The convex and continuous function describes the plasticity yield condition. It is assumed that the set... [Pg.309]

Several generalizations of the inelastic theory to large deformations are developed in Section 5.4. In one the stretching (velocity strain) tensor is substituted for the strain rate. In order to make the resulting constitutive equations objective, i.e., invariant to relative rotation between the material and the coordinate frame, the stress rate must be replaced by one of a class of indifferent (objective) stress rates, and the moduli and elastic limit functions must be isotropic. In the elastic case, the constitutive equations reduce to the equation of hypoelastidty. The corresponding inelastic equations are therefore termed hypoinelastic. [Pg.119]

Another generalization uses referential (material) symmetric Piola-Kirchhoff stress and Green strain tensors in place of the stress and strain tensors used in the small deformation theory. These tensors have components relative to a fixed reference configuration, and the theory of Section 5.2 carries over intact when small deformation quantities are replaced by their referential counterparts. The referential formulation has the advantage that tensor components do not change with relative rotation between the coordinate frame and the material, and it is relatively easy to construct specific constitutive functions for specific materials, even when they are anisotropic. [Pg.119]

The referential formulation is translated into an equivalent current spatial description in terms of the Cauchy stress tensor and Almansi strain tensor, which have components relative to the current spatial configuration. The spatial constitutive equations take a form similar to the referential equations, but the moduli and elastic limit functions depend on the deformation, showing effects that have misleadingly been called strain-induced hardening and anisotropy. Since the components of spatial tensors change with relative rigid rotation between the coordinate frame and the material, it is relatively difficult to construct specific constitutive functions to represent particular materials. [Pg.119]

The deformation may be viewed as composed of a pure stretch followed by a rigid rotation. Stress and strain tensors may be defined whose components are referred to an intermediate stretched but unrotated spatial configuration. The referential formulation may be translated into an unrotated spatial description by using the equations relating the unrotated stress and strain tensors to their referential counterparts. Again, the unrotated spatial constitutive equations take a form similar to their referential and current spatial counterparts. The unrotated moduli and elastic limit functions depend on the stretch and exhibit so-called strain-induced hardening and anisotropy, but without the effects of rotation. [Pg.119]

It is consistent with the approximations of small strain theory made in Section A.7 to neglect the higher-order terms, and to consider the elastic moduli to be constant. Stated in another way, it would be inconsistent with the use of the small deformation strain tensor to consider the stress relation to be nonlinear. The previous theory has included such nonlinearity because the theory will later be generalized to large deformations, where variable moduli are the rule. [Pg.144]

A strength value associated with a Hugoniot elastic limit can be compared to quasi-static strengths or dynamic strengths observed values at various loading strain rates by the relation of the longitudinal stress component under the shock compression uniaxial strain tensor to the one-dimensional stress tensor. As shown in Sec. 2.3, the longitudinal components of a stress measured in the uniaxial strain condition of shock compression can be expressed in terms of a combination of an isotropic (hydrostatic) component of pressure and its deviatoric or shear stress component. [Pg.29]

Vectors are commonly used for description of many physical quantities such as force, displacement, velocity, etc. However, vectors alone are not sufficient to represent all physical quantities of interest. For example, stress, strain, and the stress-strain iaws cannot be represented by vectors, but can be represented with tensors. Tensors are an especially useful generalization of vectors. The key feature of tensors is that they transform, on rotation of coordinates, in special manners. Tsai [A-1] gives a complete treatment of the tensor theory useful in composite materials analysis. What follows are the essential fundamentals. [Pg.472]

The stiffness and compliances in stress-strain and strain-stress relations are fourth-order tensors because they relate two second-order tensors ... [Pg.474]

Obviously, the number of free indices no longer denotes the order of the tensor. Also, the range on the indices no longer denotes the number of spatial dimensions, if the stress and strain tensors are symmetric (they are if no body couples act on an element), then... [Pg.475]

Here we describe the strain history with the Finger strain tensor C 1(t t ) as proposed by Lodge [55] in his rubber-like liquid theory. This equation was found to describe the stress in deforming polymer melts as long as the strains are small (second strain invariant below about 3 [56] ). The permanent contribution GcC 1 (r t0) has to be added for a linear viscoelastic solid only. C 1(t t0) is the strain between the stress free state t0 and the instantaneous state t. Other strain measures or a combination of strain tensors, as discussed in detail by Larson [57], might also be appropriate and will be considered in future studies. A combination of Finger C 1(t t ) and Cauchy C(t /. ) strain tensors is known to express the finite second normal stress difference in shear, for instance. [Pg.189]

With the gel equation, we can conveniently compute the consequences of the self-similar spectrum and later compare to experimental observations. The material behaves somehow in between a liquid and a solid. It does not qualify as solid since it cannot sustain a constant stress in the absence of motion. However, it is not acceptable as a liquid either, since it cannot reach a constant stress in shear flow at constant rate. We will examine the properties of the gel equation by modeling two selected shear flow examples. In shear flow, the Finger strain tensor reduces to a simple matrix with a shear component... [Pg.195]

Note that 7Zu = 0 due to the continuity equation. Thus, the pressure-rate-of-strain tensor s role in a turbulent flow is to redistribute turbulent kinetic energy among the various components of the Reynolds stress tensor. The pressure-diffusion term T is defined... [Pg.69]

Thus, only the normal Reynolds stresses (i = j) are directly dissipated in a high-Reynolds-number turbulent flow. The shear stresses (i / j), on the other hand, are dissipated indirectly, i.e., the pressure-rate-of-strain tensor first transfers their energy to the normal stresses, where it can be dissipated directly. Without this redistribution of energy, the shear stresses would grow unbounded in a simple shear flow due to the unbalanced production term Vu given by (2.108). This fact is just one illustration of the key role played by 7 ., -in the Reynolds stress balance equation. [Pg.69]

Experience with applying the Reynolds-stress model (RSM) to complex flows has shown that the most critical term in (4.52) to model precisely is the anisotropic rate-of-strain tensor 7 .--1 (Pope 2000). Relatively simple models are thus usually employed for the other unclosed terms. For example, the dissipation term is often assumed to be isotropic ... [Pg.136]

Returning to (4.52), it should be noted that many Reynolds-stress models have been proposed in the literature, which differ principally by the closure used for the anisotropic rate-of-strain tensor. Nevertheless, almost all closures can be written as (Pope 2000)... [Pg.137]


See other pages where Stress-strain tensors is mentioned: [Pg.74]    [Pg.8]    [Pg.74]    [Pg.8]    [Pg.136]    [Pg.706]    [Pg.14]    [Pg.1]    [Pg.96]    [Pg.160]    [Pg.86]    [Pg.123]    [Pg.144]    [Pg.148]    [Pg.153]    [Pg.23]    [Pg.56]    [Pg.76]    [Pg.538]    [Pg.115]    [Pg.187]    [Pg.187]    [Pg.142]    [Pg.3]   
See also in sourсe #XX -- [ Pg.3 ]




SEARCH



Strain tensor

© 2024 chempedia.info