Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Strength thermal-transfer

Mechanical Design. Typically, each battery will have a thermal sleeve around each cell. The cells are mechanicily restrained by clamping them in a precision-machined sleeve. These sleeves can be made of either a metal such as aluminum or a composite made in a manner to provide electrical isolation, high thermal conductivity and strength. The sleeve is isolated electrically from the cell by a blanket, such as CHO-THERM which allows thermal transfer, wrapped around the cylindrical portion of the cell between the cell and sleeve. The space between the sleeves, blanket and cell is normally filled with a material such as an RTV 566 to provide better thermal transfer as well as to bond the interfaces mechanically. The sleeves are then either attached mechanically to a base plate which is the interface to the satellite structure or are attached to an interface such as extruded heat pipe assemblies which are a part of the satellite structure. The exposed surfaces of the cells are protected by a coating of Solithane or a combination of paint on the cell pressure vessel and Solithane. The desired battery voltage defines the number of cells used for the assembly. [Pg.962]

The heat-transfer quaUties of titanium are characterized by the coefficient of thermal conductivity. Even though the coefficient is low, heat transfer in service approaches that of admiralty brass (thermal conductivity seven times greater) because titanium s greater strength permits thinner-walled equipment, relative absence of corrosion scale, erosion—corrosion resistance that allows higher operating velocities, and the inherently passive film. [Pg.102]

Despite the body of evidence in favor of the Mayo mechanism, the formation of diphenylcyclobutanes (90, 91) must still be accounted for. It is possible that they arise via the 1,4-diradical 94 and it is also conceivable that this diradical is an intermediate in the formation of the Diels-Alder adduct 95 (Scheme 3.64) and could provide a second (minor) source of initiation. Direct initiation by diradicals is suggested in the thermal polymerization of 2,3,4,5,6-pentafluorostyrene where transfer of a fluorine atom from Diels-Alder dimer to monomer seems highly unlikely (high C-F bond strength) and for derivatives which cannot form a Diels-Alder adduct. [Pg.109]

Comments on the thermal nitration of enol silyl ethers with TNM. The strikingly similar color changes that accompany the photochemical and thermal nitration of various enol silyl ethers in Table 2 indicates that the preequilibrium [D, A] complex in equation (15) is common to both processes. Moreover, the formation of the same a-nitroketones from the thermal and photochemical nitrations suggests that intermediates leading to thermal nitration are similar to those derived from photochemical nitration. Accordingly, the differences in the qualitative rates of thermal nitrations are best reconciled on the basis of the donor strengths of various ESEs toward TNM as a weak oxidant in the rate-limiting dissociative thermal electron transfer (kET), as described in Scheme 4.40... [Pg.208]

Moreover, the thermal nitration of various aromatic substrates with different X-PyNO cations shows the strong rate dependence on the acceptor strength of X-PyNO and the aromatic donor strength. This identifies the influence of the HOMO-LUMO gap in the EDA complexes (see Chart 3), and thus provides electron-transfer activation as the viable mechanistic basis for the aromatic nitration. Indeed, the graphic summary in Fig. 18 for toluene nitration depicts the isomeric composition of o-, m- and p-nitrotoluene to be singularly invariant over a wide range of substrate selectivities (k/kQ based on the benzene... [Pg.282]

The increased importance of charge transfer in proceeding up the series of NO+ complexes with the enhanced donor strength of arenes that vary from benzene with IP = 9.23 eV to the electron-rich hexamethylbenzene (IP - 7.85 eV) has its chemical consequences with respect to thermal (adiabatic) electron transfer. Thus the benzene complex with Z = 0.52 is persistent in acetonitrile solution for long periods, provided the solution is protected from adventitious moisture and light. By contrast, the hexamethylbenzene complex with Z = 0.97 slowly liberates nitric oxide under... [Pg.230]


See other pages where Strength thermal-transfer is mentioned: [Pg.1203]    [Pg.127]    [Pg.2]    [Pg.144]    [Pg.537]    [Pg.1203]    [Pg.4657]    [Pg.238]    [Pg.93]    [Pg.232]    [Pg.9274]    [Pg.315]    [Pg.260]    [Pg.848]    [Pg.206]    [Pg.365]    [Pg.199]    [Pg.522]    [Pg.6]    [Pg.6]    [Pg.246]    [Pg.1087]    [Pg.1136]    [Pg.248]    [Pg.369]    [Pg.75]    [Pg.999]    [Pg.846]    [Pg.137]    [Pg.213]    [Pg.42]    [Pg.292]    [Pg.147]    [Pg.340]    [Pg.565]    [Pg.295]    [Pg.39]    [Pg.925]    [Pg.70]    [Pg.100]    [Pg.262]    [Pg.167]    [Pg.184]    [Pg.238]    [Pg.812]   
See also in sourсe #XX -- [ Pg.3 , Pg.60 ]




SEARCH



Thermal transfer

© 2024 chempedia.info