Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Strecker addition

Strecker addition (cyanide addition to an iminium ion). The major problem here is that the reaction is more complicated, involving pre-equilibrium formation of the iminium ion and then C-C bond formation. The ratedetermining step is taken to be the addition of cyanide ion to an iminium ion. There are not many cases where the rate and equilibrium constants for the rate-determining step are known. For these few cases the rate constants could be calculated by NBT as shown in Table 12. [Pg.205]

Two other types of catalysts have been investigated for the enantioselective Strecker-type reactions. Chiral N-oxide catalyst 24 has been utilized in the trimethylsilyl cyanide promoted addition to aldimines to afford the corresponding aminonitriles with enantioselectivities up to 73% ee [14]. Electron-deficient aldimines were the best substrates, but unfortunately an equimolar amount of catalyst 24 was used in these reactions. The asymmetric Strecker addition of trimethylsilyl cyanide to a ketimine with titanium-based BINOL catalyst 25 gave fast conversions to quarternary aminonitriles with enantiomeric excesses to 59%... [Pg.191]

EIGURE 5.9 Mechanism for the Strecker addition. Based on Figure 1 of Ref. [84]. [Pg.139]

The most general methods for the syntheses of 1,2-difunctional molecules are based on the oxidation of carbon-carbon multiple bonds (p. 117) and the opening of oxiranes by hetero atoms (p. 123fl.). There exist, however, also a few useful reactions in which an a - and a d -synthon or two r -synthons are combined. The classical polar reaction is the addition of cyanide anion to carbonyl groups, which leads to a-hydroxynitriles (cyanohydrins). It is used, for example, in Strecker s synthesis of amino acids and in the homologization of monosaccharides. The ff-hydroxy group of a nitrile can be easily substituted by various nucleophiles, the nitrile can be solvolyzed or reduced. Therefore a large variety of terminal difunctional molecules with one additional carbon atom can be made. Equally versatile are a-methylsulfinyl ketones (H.G. Hauthal, 1971 T. Durst, 1979 O. DeLucchi, 1991), which are available from acid chlorides or esters and the dimsyl anion. Carbanions of these compounds can also be used for the synthesis of 1,4-dicarbonyl compounds (p. 65f.). [Pg.50]

Miscellaneous Reactions. Sodium bisulfite adds to acetaldehyde to form a white crystalline addition compound, insoluble in ethyl alcohol and ether. This bisulfite addition compound is frequendy used to isolate and purify acetaldehyde, which may be regenerated with dilute acid. Hydrocyanic acid adds to acetaldehyde in the presence of an alkaU catalyst to form cyanohydrin the cyanohydrin may also be prepared from sodium cyanide and the bisulfite addition compound. Acrylonittile [107-13-1] (qv) can be made from acetaldehyde and hydrocyanic acid by heating the cyanohydrin that is formed to 600—700°C (77). Alanine [302-72-7] can be prepared by the reaction of an ammonium salt and an alkaU metal cyanide with acetaldehyde this is a general method for the preparation of a-amino acids called the Strecker amino acids synthesis. Grignard reagents add readily to acetaldehyde, the final product being a secondary alcohol. Thioacetaldehyde [2765-04-0] is formed by reaction of acetaldehyde with hydrogen sulfide thioacetaldehyde polymerizes readily to the trimer. [Pg.51]

Formation of C — C Bonds by Addition to Imino Groups via Strecker and Ugi Reactions... [Pg.781]

Like the Strecker synthesis, the Ugi reaction also involves a nucleophilic addition to an imine as the crucial step in which the stereogenic center of an a-amino acid derivative is formed4. The Ugi reaction, also denoted as a four-component condensation (A), is related to the older Passerini reaction5 (B) in an analogous fashion as the Strecker synthesis is to cyanohydrin formation. In both the Ugi and the Passerini reaction, an isocyanide takes the role of cyanide. [Pg.782]

In asymmetric Strecker synthesis ( + )-(45,55 )-5-amino-2,2-dimethyl-4-phenyl-l,3-dioxane has been introduced as an alternative chiral auxiliary47. The compound is readily accessible from (lS,25)-2-amino-l-phcnyl-l,3-propancdioI, an intermediate in the industrial production of chloramphenicol, by acctalization with acetone. This chiral amine reacts smoothly with methyl ketones of the arylalkyl47 or alkyl series48 and sodium cyanide, after addition of acetic acid, to afford a-methyl-a-amino nitriles in high yield and in diastereomerically pure form. [Pg.789]

The (/ (-enantiomer of 5-amino-2,2-dimethyl-4-phenyl-l,3-dioxane has also been successfully used for asymmetric Strecker syntheses4In addition, the acetal protecting moiety of the auxiliary has been modified. No significant change in the Strecker syntheses of a-mcthylamino nitriles has been reported for these alternative auxiliaries50. [Pg.791]

The solid-phase synthesis of the 2(lff)-pyrazinone scaffold is based on a Strecker reaction of commercially available Wang amide linker with appropriate aldehyde and tetramethylsilyl (TMS) cyanide, followed by cyclization of a-aminonitrile with oxalyl chloride resulting in the resin linked pyrazinones. This approach allows a wide diversity at the C-6-position of pyrazinone scaffold (Scheme 35, Table 1). As it has been shown for the solution phase, the sensitive imidoyl chloride moiety can easily undergo an addition/elimination reaction with in situ-generated sodium methoxide affording the resin-linked... [Pg.292]

Like the nitronate ion, the cyanide ion is synthetically equivalent to the aminomethyl carbanion (CH2NH2) , because of the possible reduction of - CN to the - CH2NH2 group. Consequently, the addition of cyanide ion to imines to give a-aminonitriles (Strecker-type reaction) is a viable route to 1,2-diamines. As a matter of fact, a number of diastereoselective and catalytic... [Pg.19]

Adenosine has been proposed to induce sleep by inhibiting cholinergic neurons of the BFB and the brainstem. In this respect, adenosine and the adenosine transport inhibitor NBTI decrease the discharge rate of BFB neurons during W, whereas the adenosine Ai receptor antagonist CPDX induces the opposite effects (Alam et al., 1999 Strecker et al., 2000). In addition, perfusion of adenosine into... [Pg.245]

The addition of cyanide to imines, the Strecker reaction, constitutes an interesting strategy for the asymmetric synthesis of a-amino acid derivatives. Sigman and Jacobsen150 reported the first example of a metal-catalyzed enan-tioselective Strecker reaction using chiral salen Al(III) complexes 143 as the catalyst (see Scheme 2-59). [Pg.123]

Zr-Catalyzed Enantioselective Cyanide Additions to Imines (Strecker Reactions)... [Pg.204]

To date, the most frequently used ligand for combinatorial approaches to catalyst development have been imine-type ligands. From a synthetic point of view this is logical, since imines are readily accessible from the reaction of aldehydes with primary or secondary amines. Since there are large numbers of aldehydes and amines that are commercially available the synthesis of a variety of imine ligands with different electronic and steric properties is easily achieved. Additionally, catalysts based on imine ligands are useful in a number of different catalytic processes. Libraries of imine ligands have been used in catalysts of the Strecker reaction, the aza-Diels-Alder reaction, diethylzinc addition, epoxidation, carbene insertions, and alkene polymerizations. [Pg.439]

In screening a library of these molecules with a variety of metal ions, it was found that the ligand in the absence of added metal was more active than the metal complexes tested. Three libraries were synthesized where sequential changes were made in the structures contained in each library. Ultimately, ligand 64, with a thiourea linker, was found to catalyze the Strecker reaction between benzaldehyde and HCN in 91% ee (Scheme 8). This system also catalyzed the addition of HCN to aliphatic aldehydes with selectivities of > 80% ee. [Pg.446]

Remarks on Sections 6 and 7.-—The method here described for the synthesis of cyanohydrins—treatment of the bisulphite compound of the aldehyde with potassium cyanide—cannot be used in all cases. Concentrated solutions of hydrocyanic acid or anhydrous hydrogen cyanide are often used. The general method for the synthesis of a-amino-acids, the nitriles of which are formed by the union of ammonium cyanide with aldehydes or ketones (Strecker), is to be contrasted with that for the synthesis of a-hydroxy acids. For additional amino-acid syntheses see Chap. VII. 2, p. 276. [Pg.230]

In addition to this, the simplest method of synthesising a-amino-acids (a method which is less satisfactory for the preparation of higher members of the series), there are two other processes, both starting from aldehydes. Strecker obtained the nitrile of the amino-acid, Chap. V. 7, p. 229, by addition of ammonium cyanide to the next lower aldehyde, and Erlenmeyer jun. condensed hippuric acid with the aldehyde containing two carbon atoms less than the required amino-acid. [Pg.276]

Nucleophilic addition of carbon to imines the Strecker synthesis of amino acids... [Pg.245]

Optically active a-amino acids are prepared by a cyanide addition to imines, known as the Strecker reaction. Several organobase catalysts and metal complex catalysts have been successfully applied to the asymmetric catalytic Strecker amino... [Pg.120]


See other pages where Strecker addition is mentioned: [Pg.138]    [Pg.8]    [Pg.217]    [Pg.138]    [Pg.8]    [Pg.217]    [Pg.421]    [Pg.781]    [Pg.784]    [Pg.785]    [Pg.787]    [Pg.789]    [Pg.791]    [Pg.793]    [Pg.795]    [Pg.797]    [Pg.801]    [Pg.231]    [Pg.255]    [Pg.255]    [Pg.258]    [Pg.260]    [Pg.265]    [Pg.99]    [Pg.360]    [Pg.540]    [Pg.332]    [Pg.122]    [Pg.318]   
See also in sourсe #XX -- [ Pg.203 ]




SEARCH



Strecker

© 2024 chempedia.info