Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stoichiometric Coefficients and Reaction Progress Variables

Without chemical reaction our world would be a barren planet. No life of any sort would exist. Even if we exempt the fundamental reactions involved in life processes from our proscription on chemical reactions, our lives would be extremely different from what they are today. There would be no fire for warmth and cooking, no iron and steel with which to fashion even the crudest implements, no synthetic fibers for clothing, and no engines to power our vehicles. [Pg.1]

One feature that distinguishes the chemical engineer from other types of engineers is the ability to analyze systems in which chemical reactions are occurring and to apply the results of his analysis in a manner that benefits society. Consequently, chemical engineers must be well acquainted with the fundamentals of chemical kinetics and the manner in which they are applied in chemical reactor design. This textbook provides a systematic introduction to these subjects. [Pg.1]

Chemical kinetics deals with quantitative studies of the rates at which chemical processes occur, the factors on which these rates depend, and the molecular acts involved in reaction processes. A description of a reaction in terms of its constituent molecular acts is known as the mechanism of the reaction. Physical and organic chemists are primarily interested in chemical kinetics for the light that it sheds on molecular properties. From interpretations of macroscopic. kinetic data in terms of molecular mechanisms, they can gain insight into the nature of reacting systems, the processes by which chemical bonds are made and broken, and the structure of the resultant product. Although chemical engineers find the concept of a reaction mechanism useful in the correlation, interpolation, and extrapolation of rate data, they are more concerned with applications [Pg.1]

Chemical engineers have traditionally approached kinetics studies with the goal of describing the behavior of reacting systems in terms of macroscopically observable quantities such as temperature, pressure, composition, and Reynolds number. This empirical approach has been very fruitful in that it has permitted chemical reactor technology to develop to a point that far surpasses the development of theoretical work in chemical kinetics. [Pg.1]

The dynamic viewpoint of chemical kinetics may be contrasted with the essentially static viewpoint of thermodynamics. A kinetic system is a system in unidirectional movement toward a condition of thermodynamic equilibrium. The chemical composition of the system changes continuously with time. A system that is in thermodynamic equilibrium, on the other hand, undergoes no net change with time. The thermo-dynamicist is interested only in the initial and final states of the system and is not concerned with the time required for the transition or the molecular processes involved therein the chemical kineticist is concerned primarily with these issues. [Pg.1]


Chapter 1 Stoichiometric Coefficients and Reaction Progress Variables... [Pg.2]


See other pages where Stoichiometric Coefficients and Reaction Progress Variables is mentioned: [Pg.1]    [Pg.2]    [Pg.4]    [Pg.1]   


SEARCH



And progress

Progress variable

Reaction coefficients

Reaction progress

Reaction progress variable

Reaction variable

Stoichiometric coefficients

Stoichiometrical coefficient

Stoichiometrical reactions

Variability, coefficient

Variables and

Variables coefficients

© 2024 chempedia.info