Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Steroids radical relay chlorination

The selectivity of the radical relay chlorination is striking. In the case of the enone (13 Sdieme 18), and in related compounds with A-ring dienones, the m-iodobenzoate template at C-17 directs chlorination to C-9 and not to die preexisting functional groups of (13). The selective chlorination of C-9 seems to be quantitative, although in the first report the A "Lalkene (14) was isolated in only 77% yield. Later work has shown that the overall introduction of this double bond can have yields in the 90-93% range, and good yields for this reaction have also been reported from another laboratory. Template-directed radical relay chlorination on the a-face of steroids has also been successful in the a/b cu-coprostanol steroid series,and in the cholestanol series with iodophenyl templates linked by amide, ether, or sulfonate functions rather than carboxylic esters. ... [Pg.47]

Catalytic turnover has also been seen in radical relay chlorinations in which the template is temporarily linked to the substrate in a mixed metal complex. The steroid phosphate (22) and catalytic ligand... [Pg.50]

Catalytic turnover has also been seen in radical relay chlorinations in which the template is temporarily linked to the substrate in a mixed metal complex. The steroid phosphate (22) and catalytic ligand (23) both bind to zinc in a mixed complex, and the iodine atom of (23) directs chlorination of (22) at C-9 with reasonable selectivity (Scheme 25). Five or more turnovers are seen, when only 10% of the catalyst (23) is used. ... [Pg.50]

We also attached three steroid substrates to an iodophenyl template in 16 (Scheme 6-7) using a tris-silyl ether link, and saw that the template could direct selective radical-relay chlorination to all three tethered substrate species in the same work we reported a similar finding when a thiophene ring was the triply tethered template [49]. Thus the sulfur atom of thiophene can perform radical relay. In these triple catalytic functionalizations, the more reactive sulfuryl chloride was the preferred reagent. [Pg.167]

We have largely been describing reactions on steroid substrates, which are conforma-tionally rigid and permit selective functionalizations by appropriate tethered templates. However, when the templates are linked to flexible chains, the results can be used to learn about the conformational preferences of such flexible chains. In one study [56], we examined the positional selectivities of insertion reactions into flexible chains by attached benzophenone units, a process we had also examined earlier [31], and compared the results with those from the intramolecular chlorination of such flexible chains by attached aryliodine dichlorides. The results were complementary. In another study [57] we used long-chain alkyl esters of nicotinic acid in radical relay chlorination, and saw some interesting selectivities reflecting conformational preferences in these nominally flexible cases. [Pg.171]

The sulfur atom of thiophene can function as a template for radical-relay chlorinations. An excellent application of this concept is in the regiospecific chlorination of a steroid molecule <82JA2045>. Reaction of (2-thienyl)trichlorosilane with 3a-cholestanol gave the tris(cholestanyl)-silylether (623). When this was irradiated in CH2CI2 solution with 2 equiv. of sulfuryl chloride and a catalytic amount of AIBN, the 9(1 l)-olefin was produced in 45% yield after alkaline hydrolysis and elimination of HCl. Apparently, a chlorine atom becomes attached to the sulfur of the thiophene ... [Pg.604]

Breslow s template-directed remote oxidation of steroids utilizes an aryl iodide as a template to direct the oxidation of steroid tertiary carbons by the radical relay mechanism, in which a chlorine radical is transferred from a [9-1-2] [PhICl] radical to the iodine atom of the template and then relayed to a geometrically accessible hydrogen atom. This method allows a highly regioselective functionalization of nonactivated carbon atoms of steroids [Eq. (78)] [137,138]. [Pg.41]

We used the radical relay process, chlorinating C-9 and then generating the 9(11) double bond, in a synthesis of cortisone 91 [158]. This is a substitute for manufacturing processes in which C-9 or C-ll are hydroxylated by biological fermentation. Also, with templates that directed the chlorination to C-17 of 3a-cholestanol, such as that in 90, we were able to remove the steroid sidechain [159-162]. Using an electrochemical oxidation process, we could direct chlorination by simple chloride ion with an iodo-phenyl template [163]. A general review of the processes with iodophenyl templates has been published [164]. [Pg.23]

The radical relay process also works with other template types. Thus, the thioether unit in 92 directed chlorination of C-14 by S02C12 [165]. Also, the sulfur in the thiox-anthone template of 93 directed the radical relay process to C-9 [166]. The thiophene sulfur in 94 was able to direct chlorination to C-9 in all three attached steroids [167]. In all these cases, an intermediate is formed with a chlorine atom bonded to sulfur. [Pg.23]

PhICl2 is the chlorinating agent in the novel template directed radical relay process of remote regioselective chlorination of steroids introduced by Breslow. In this method a... [Pg.564]

The majw work to date on synthetic applications of remote functionalization has involved free radical chlorination. The earliest studies involved the direct attachment of aryliodine dichloride units to the steroid substrates, then intramolecular free radical chain chlorination in benzene or chlorobenzene solution (Scheme 14). Yields were only in the 50% region, but fairly good selecdvities were observed compound (6) afforded chiefly the 9-chloro derivative, while compound (7) produced the 14-chloro steroid. The yields and selectivities were considerably improved when it was realized that aromatic solvents promote intermolecular random processes by forming complexes with C1-, and when the radical relay method was developed. [Pg.43]

Limited studies have been done on template-directed chlorination on the -face of steroids. Compound (15 Scheme 19) was designed so that die template could curve around the angular C-18 methyl group and direct chlorination to C-20. Reaction with an excess of PhICh led to ca. 40% chlorination of C-20 with 25% unftmctionalized steroid. The 20-chloro steroid was converted in part to the which was ozonized to form the 17-acetyl steroid (15). A similar result was observed with the i-steroid derivative (17). The selectivities and yields are not yet up to those of other examples of the radical relay reaction. [Pg.48]

Ingenious application of remote oxidation has opened the way to a novel and potentially useful degradation of 5a-cholestan-3a-ol to 3a-hydroxy-5a-androstan-17-one ( androsterone ). The radical relay process, whereby photolysis of an iodoaryl ester with iodobenzene dichloride introduces a chlorine atom or unsaturation into the steroid nucleus, has been adapted by use of the 3a-(4 -iodobiphenyl-3-carboxylate) (301). The size of this ester grouping allows the iodine atom to come... [Pg.279]

Some variants on the simple template-directed chlorination were also developed. For example, a steroid carrying a tethered iodophenyl group was chlorinated by electrolysis of a solution carrying chloride ion [54]. In this case, the electrolysis furnished CI2 in solution to carry a radical relay process and electrolysis also initiated the radical process by one-electron oxidation of the iodophenyl group. As another variant, the radical relay mechanism requires that it be a chlorine atom that attaches to the iodine or pyridine or sulfur to abstract hydrogen, since a complexed bromine atom is not reactive enough, but the new bond to the substrate does not have to be a carbon-chlorine link. That bond is formed by untemplated attack of the substrate carbon radical on a reagent in solution and, with an appropriate sequence of tandem reactions, other atoms can be linked to the substrate. [Pg.170]

As we have described elsewhere [9], we were able to use this radical relay process to complete a successful synthesis of cortisone. With another appropriate template we were able to achieve a selective chlorination at C-17 of the steroid, which permitted us to remove the steroid side chain [10]. Recent work in Germany [11] has resulted in a somewhat easier sequence for converting the 17-chloro steroid derivative to a useful intermediate in which the side chain has been removed. It remains to be seen whether the steroid reactions by which we can produce corticosteroids or remove steroid side chains and generate useful intermediates actually lead to practical transformations of industrial interest. These reactions are under active investigation in several companies. [Pg.189]


See other pages where Steroids radical relay chlorination is mentioned: [Pg.46]    [Pg.46]    [Pg.47]    [Pg.279]    [Pg.166]    [Pg.177]    [Pg.47]    [Pg.782]    [Pg.24]    [Pg.565]    [Pg.280]    [Pg.164]    [Pg.165]    [Pg.166]    [Pg.167]    [Pg.171]    [Pg.46]    [Pg.189]    [Pg.606]   
See also in sourсe #XX -- [ Pg.46 ]

See also in sourсe #XX -- [ Pg.46 ]

See also in sourсe #XX -- [ Pg.7 , Pg.46 ]

See also in sourсe #XX -- [ Pg.7 , Pg.46 ]

See also in sourсe #XX -- [ Pg.46 ]




SEARCH



Chlorine radical

Radical chlorination

Radical relay chlorination

Steroid, chlorinated

© 2024 chempedia.info