Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stereoselectivity vinyl

Jang et al. reported a highly diastereoselective tandem radical reaction to prepare -polysubstituted homoallylic alcohols (Scheme 64) [175]. This new process relies on the initial addition of benzoyl radicals onto an olefin. The intermediate radicals such as 201 underwent a stereoselective vinylation (two elementary steps) to form the desired Bz-protected homoallylic alcohols in good yields. The stereochemical outcome of the reaction is strongly dependent on polar factors such as solvent polarity of Lewis acid additives. More sophisticated domino processes including cyclizations can be devised, as is the case for the formation of 203. [Pg.43]

Farnesyl diphosphate analogues (36) (40) modified in the central isoprene unit have been prepared via the authors stereoselective vinyl triflate-mediated route to isoprenoids. The 7-allyl compound (38) is a modest inhibitor of... [Pg.302]

Scheme 7. Stereoselective vinyl Grignard reaction of galactosyl iodide... Scheme 7. Stereoselective vinyl Grignard reaction of galactosyl iodide...
Kulkarni have now reported a potentially general method for the preparation of a-t-butyldimethylsilyl aldehydes by hydrolysis of the a-silyl imines (Scheme 34). These silyl aldehydes serve as stereoselective vinyl cation... [Pg.85]

The stereospedfic and regioselective hydrobromination of alkynes with chlorobis(T -cyclopentadienyl)hydrozirconium and NBS produces ( )-vinylic bromides in good yields. The bromine atom usually adds regioselectively to the carbon atom that bears the smaller substituent and stereoselectively trans to the larger substituent (D.W. Hart, 1975 M. Nakatsuka,... [Pg.132]

The coupling of alkenylboranes with alkenyl halides is particularly useful for the stereoselective synthesis of conjugated dienes of the four possible double bond isomers[499]. The E and Z forms of vinylboron compounds can be prepared by hydroboration of alkynes and haloalkynes, and their reaction with ( ) or (Z)-vinyl iodides or bromides proceeds without isomerization, and the conjugated dienes of four possible isomeric forms can be prepared in high purity. [Pg.221]

Hydrosilylation of I-vinyl-1-cyclohexene (77) proceeds stereoselectively to give the (Z)-l-ethylidene-2-silylcyclohexane 78, which is converted into (Z)-2-ethylidenecyclohe.xanol (79)[74]. Hydrosilylation of cyclopentadiene affords the 3-silylated 1-cyclopentene 80. which is an allylic silane and used for further transformations[75.75a]. Cyclization of the 1,3,8, lO-undecatetraene system in the di(2.4-pentadienyl)malonate 69 via hydrosilylation gives the cyclopentane derivative 81. which corresponds to 2.6-octadienylsilanc[l8,76]. [Pg.435]

The primary disadvantage of the conjugate addition approach is the necessity of performing two chiral operations (resolution or asymmetric synthesis) ia order to obtain exclusively the stereochemicaHy desired end product. However, the advent of enzymatic resolutions and stereoselective reduciag agents has resulted ia new methods to efficiently produce chiral enones and CO-chain synthons, respectively (see Enzymes, industrial Enzymes in ORGANIC synthesis). Eor example, treatment of the racemic hydroxy enone (70) with commercially available porciae pancreatic Hpase (PPL) ia vinyl acetate gave a separable mixture of (5)-hydroxyenone (71) and (R)-acetate (72) with enantiomeric excess (ee) of 90% or better (204). [Pg.162]

Vinyllithium [917-57-7] can be formed direcdy from vinyl chloride by means of a lithium [7439-93-2] dispersion containing 2 wt % sodium [7440-23-5] at 0—10°C. This compound is a reactive intermediate for the formation of vinyl alcohols from aldehydes, vinyl ketones from organic acids, vinyl sulfides from disulfides, and monosubstituted alkenes from organic halides. It can also be converted to vinylcopper [37616-22-1] or divinylcopper lithium [22903-99-7], which can then be used to introduce a vinyl group stereoselectively into a variety of a, P-unsaturated systems (26), or simply add a vinyl group to other a, P-unsaturated compounds to give y, 5-unsaturated compounds. Vinyllithium reagents can also be converted to secondary alcohols with trialkylb o r ane s. [Pg.414]

This reaction illustrates a stereoselective preparation of (Z)-vinylic cuprates, which are very useful synthetic intermediates. They react with a variety of electrophiles such as carbon dioxide, epoxides, aldehydes, allylic halides, alkyl halides, and acetylenic halides they undergo... [Pg.7]

This procedure illustrates a general method for the preparation of alkenes from the pal 1 adium(Q)-cata1yzed reaction of vinyl halides with organo-lithium compounds, which can be prepared by various methods, including direct regioselective lithiation of hydrocarbons. The method is simple and has been used to prepare a variety of alkenes stereoselectively. Similar stoichiometric organocopper reactions sometimes proceed in a nonstereoselective... [Pg.45]

Reactions of carbon nucleophiles with organohalogen compounds have great diversity for the construction of now carbon-carbon bonds. The intriguing synthon, ethoxyethynylsodium, is generated and alkylated in 1-ETHOXY-1-BUTANE. Following an alkylation of propynylsodium, a vinyl halide is generated in a stereoselective manner... [Pg.129]

Both stereoselectivity and regioselectivity occur in the reaction of steroid vinyl esters, ethers, and related compounds with A -fluoropyridinium salts [75, 7d] (equation 45). [Pg.157]

In the synthesis of carpamic acid (98), Mitsutaka and Ogawa have used 1,2-dihydropyridine as a starting material [80H(14)169]. Photooxygenation of dihydropyridine 8h afforded enr/o-peroxide 96. Subsequent stereoselective nucleophilic reaction of 96 with ethyl vinyl ether in the presence of tin chloride gave tetrahydropyridinol 97, which was then converted into carpamic acid (98) in six more steps. [Pg.291]

The chiral BOX-copper(ll) complexes, (S)-21a and (l )-21b (X=OTf, SbFg), were found by Evans et al. to catalyze the enantioselective cycloaddition reactions of the a,/ -unsaturated acyl phosphonates 49 with ethyl vinyl ether 46a and the cyclic enol ethers 50 giving the cycloaddition products 51 and 52, respectively, in very high yields and ee as outlined in Scheme 4.33 [38b]. It is notable that the acyclic and cyclic enol ethers react highly stereoselectively and that the same enantiomer is formed using (S)-21a and (J )-21b as the catalyst. It is, furthermore, of practical importance that the cycloaddition reaction can proceed in the presence of only 0.2 mol% (J )-21a (X=SbF6) with minimal reduction in the yield of the cycloaddition product and no loss of enantioselectivity (93% ee). [Pg.179]

In an effort to identify a more stereoselective route to dihydroagarofuran (15), trimethylsilylated alkyne 17 was utilized as a substrate for radical cyclization (Scheme 2). Treatment of 17 with a catalytic amount of AIBN and tri-n-butyltin hydride (1.25 equiv) furnishes a mixture of stereoisomeric vinyl silanes 18 (72% combined yield) along with an uncyclized reduction product (13% yield). The production of stereoisomeric vinyl silanes in this cyclization is inconsequential because both are converted to the same alkene 19 upon protodesiiyiation. Finally, a diastereoselective di-imide reduction of the double bond in 19 furnishes dihydroagaro-... [Pg.384]

It is well known that aziridination with allylic ylides is difficult, due to the low reactivity of imines - relative to carbonyl compounds - towards ylide attack, although imines do react with highly reactive sulfur ylides such as Me2S+-CH2-. Dai and coworkers found aziridination with allylic ylides to be possible when the activated imines 22 were treated with allylic sulfonium salts 23 under phase-transfer conditions (Scheme 2.8) [15]. Although the stereoselectivities of the reaction were low, this was the first example of efficient preparation of vinylaziridines by an ylide route. Similar results were obtained with use of arsonium or telluronium salts [16]. The stereoselectivity of aziridination was improved by use of imines activated by a phosphinoyl group [17]. The same group also reported a catalytic sulfonium ylide-mediated aziridination to produce (2-phenylvinyl)aziridines, by treatment of arylsulfonylimines with cinnamyl bromide in the presence of solid K2C03 and catalytic dimethyl sulfide in MeCN [18]. Recently, the synthesis of 3-alkyl-2-vinyl-aziridines by extension of Dai s work was reported [19]. [Pg.41]


See other pages where Stereoselectivity vinyl is mentioned: [Pg.78]    [Pg.22]    [Pg.78]    [Pg.22]    [Pg.70]    [Pg.260]    [Pg.37]    [Pg.240]    [Pg.78]    [Pg.22]    [Pg.78]    [Pg.22]    [Pg.70]    [Pg.260]    [Pg.37]    [Pg.240]    [Pg.20]    [Pg.72]    [Pg.326]    [Pg.32]    [Pg.153]    [Pg.370]    [Pg.471]    [Pg.525]    [Pg.374]    [Pg.679]    [Pg.271]    [Pg.89]    [Pg.91]    [Pg.100]    [Pg.119]    [Pg.161]    [Pg.43]    [Pg.128]    [Pg.22]    [Pg.216]    [Pg.386]    [Pg.585]    [Pg.624]    [Pg.693]   
See also in sourсe #XX -- [ Pg.79 , Pg.370 ]




SEARCH



© 2024 chempedia.info