Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stereoselectivity chiral catalysts

Depending on the stereoselectivity of the reaction, either the R or the 5 configuration can be generated at C-2 in the product. This corresponds to enantioselective synthesis of the D and l enantiomers of a-amino acids. The hydrogenation using stereoselective chiral catalysts has been carefully investigated. The most effective catalysts for the reaction are rhodium complexes with chiral phosphine ligands. Table 2.1 records some illustrative results. The details of the catalytic mechanism need not be considered here. The fundamental point is that the chiral environment at the catalytic... [Pg.102]

This chemical bond between the metal and the hydroxyl group of ahyl alcohol has an important effect on stereoselectivity. Asymmetric epoxidation is weU-known. The most stereoselective catalyst is Ti(OR) which is one of the early transition metal compounds and has no 0x0 group (28). Epoxidation of isopropylvinylcarbinol [4798-45-2] (1-isopropylaHyl alcohol) using a combined chiral catalyst of Ti(OR)4 and L-(+)-diethyl tartrate and (CH2)3COOH as the oxidant, stops at 50% conversion, and the erythro threo ratio of the product is 97 3. The reason for the reaction stopping at 50% conversion is that only one enantiomer can react and the unreacted enantiomer is recovered in optically pure form (28). [Pg.74]

Dipolar cydoadditions are one of the most useful synthetic methods to make stereochemically defined five-membered heterocydes. Although a variety of dia-stereoselective 1,3-dipolar cydoadditions have been well developed, enantioselec-tive versions are still limited [29]. Nitrones are important 1,3-dipoles that have been the target of catalyzed enantioselective reactions [66]. Three different approaches to catalyzed enantioselective reactions have been taken (1) activation of electron-defident alkenes by a chiral Lewis acid [23-26, 32-34, 67], (2) activation of nitrones in the reaction with ketene acetals [30, 31], and (3) coordination of both nitrones and allylic alcohols on a chiral catalyst [20]. Among these approaches, the dipole/HOMO-controlled reactions of electron-deficient alkenes are especially promising because a variety of combinations between chiral Lewis acids and electron-deficient alkenes have been well investigated in the study of catalyzed enantioselective Diels-Alder reactions. Enantioselectivities in catalyzed nitrone cydoadditions sometimes exceed 90% ee, but the efficiency of catalytic loading remains insufficient. [Pg.268]

The origin of the remarkable stereoselectivities displayed by chiral homogeneous catalysts has occasioned much interest and speculation. It has been generally assumed, using a lock-and-key concept, that the major product enantiomer arose from a rigid preferred initial binding of the prochiral olefin with the chiral catalyst. Halpren 48) on the basis of considerable evidence, reached the opposite conclusion the predominant product enantiomer arises from the minor, less stable diastereomer of the olefin-catalyst adduct, which frequently does not accumulate in sufficient concentration to be detected. The predominant adduct is in essence a dead-end complex for it hydrogenates at a much slower rate than does the minor adduct. [Pg.48]

These workers have developed another new type of chiral S/N ligands, namely aziridine sulfides, which were easily synthesised in a straightforward synthetic route from inexpensive and readily available (i )-cysteine. The efficiency of this sterically and electronically varied set of ligands was then examined as chiral catalysts in the palladium-catalysed test reaction. The alkylated product was obtained in excellent yields and stereoselectivities of up to 99% ee, as shown in Scheme 1.44. [Pg.38]

As described hitherto, diastereoselectivity is controlled by the stereogenic center present in the starting material (intramolecular chiral induction). If these chiral substrates are hydrogenated with a chiral catalyst, which exerts chiral induction intermolecularly, then the hydrogenation stereoselectivity will be controlled both by the substrate (substrate-controlled) and by the chiral catalyst (catalyst-controlled). On occasion, this will amplify the stereoselectivity, or suppress the selectivity, and is termed double stereo-differentiation or double asymmetric induction [68]. If the directions of substrate-control and catalyst-control are the same this is a matched pair, but if the directions of the two types of control are opposite then it is a mismatched pair. [Pg.670]

Collins and co-workers have performed studies in the area of catalytic enantioselective Diels—Alder reactions, in which ansa-metallocenes (107, Eq. 6.17) were utilized as chiral catalysts [100], The cycloadditions were typically efficient (-90% yield), but proceeded with modest stereoselectivities (26—52% ee). The group IV metal catalyst used in the asymmetric Diels—Alder reaction was the cationic zirconocene complex (ebthi)Zr(OtBu)-THF (106, Eq. 6.17). Treatment of the dimethylzirconocene [101] 106 with one equivalent of t-butanol, followed by protonation with one equivalent of HEt3N -BPh4, resulted in the formation of the requisite chiral cationic complex (107),... [Pg.212]

Scheme 6.34. Stereoselective cycloadditions with (ebthi)Zr(OTf)2 as the chiral catalyst. Scheme 6.34. Stereoselective cycloadditions with (ebthi)Zr(OTf)2 as the chiral catalyst.
One of the fundamental operations in organic synthesis remains the stereoselective reduction of carbonyl groups1241. In a process related to that reported by Hosomi et u/.[25], using hydrosilanes as the stoichiometric oxidant and amino acid anions as the catalytic source of chirality, a variety of ketones were reduced in good to excellent yield and with good stereoselectivity1261. This process reduces the amount of chiral catalyst needed and utilizes catalysts from the chiral pool that can be used directly in their commercially available form. [Pg.169]

In the enantioselective synthesis, the asymmetry (i.e., the stereoselectivity) is induced by the external chiral catalyst, while the diastereoselective synthesis does not require a chiral catalyst. The stereogenic center already present in the molecule is able to induce stereoselectivity, assuming that the synthesis starts with a single enantiomer. For instance, imagine that an a,/ -substituted product is formed, and that the reactant already contains a stereogenic carbon at a. If the reaction of (aS) leads, e.g., largely to (aS, / R) and hardly to the (aS, /IS) diastereomer (i.e., stereoisomers that are not mirror-images of each other), the reaction is diastereoselective (Scheme 14.2). [Pg.497]

A method for highly efficient asymmetric cyclopropanation with control of both relative and absolute stereochemistry uses vinyldiazomethanes and inexpensive a-hydroxy esters as chiral auxiliaries263. This method was also applied for stereoselective preparation of dihydroazulenes. A further improvement of this approach involves an enantioselective construction of seven-membered carbocycles (540) by incorporating an initial asymmetric cyclopropanation step into the tandem cyclopropanation-Cope rearrangement process using rhodium(II)-(5 )-N-[p-(tert-butyl)phenylsulfonyl]prolinate [RhjtS — TBSP)4] 539 as a chiral catalyst (equation 212)264. [Pg.843]

Thus the highest stereoselectivity is likely to be obtained with short reaction times low temperatures high concentrations of the chiral catalyst non-polar solvents [25]. [Pg.522]

Asymmetric induction has been noted [64] when ethyl glycine, protected as its imine by (S)-menthone, is allowed to react with ethyl acrylate under phase-transfer catalytic conditions using tetra-n-butylammonium bromide. An overall yield of 43% was achieved with 46% ee. The stereoselectivity of the reaction was not enhanced when A-benzylquininium or cinchoninium chloride were used and, unlike reactions catalysed by chiral catalysts, the enantiomeric excess increased, when a more polar solvent was used. [Pg.531]

A new stereoselective epoxidation catalyst based on a novel chiral sulfonato-salen manganese(III) complex intercalated in Zn/Al LDH was used successfully by Bhattacharjee et al. [125]. The catalyst gave high conversion, selectivity, and enantiomeric excess in the oxidation of (i )-limonene using elevated pressures of molecular oxygen. Details of the catalytic activities with other alkenes using both molecular oxygen and other oxidants have also been reported [126]. [Pg.203]

Once this process is explored with the model system to assess the level of enantioselectivity, we will then prepare alkyl zinc reagent 48 from 44 using standard methods - - and cross couple 48 to aryl bromide 18 using the appropriate chiral catalysts (Scheme 7). Although the acetonide stereocenter in 48 is somewhat remote from the coupling site, the stereocenter may serve to enhance the stereoselectivity of the cross-coupling process because the two possible products are diastereomers, not simply enantiomers. This reaction will produce 49 from (S)-48 and 30 from (R)-48 that can then be converted to epoxides 31 and 32 using standard methods. Epoxide 31 leads to heliannuol D 4 after base-promoted epoxide cyclization and deprotonation. Similarly, epoxide 32 leads to heliannuol A 1 after acid-promoted cyclization. [Pg.459]

Section 14.2 describes the highly stereoselective cyclopropanation chemistry of the donor/acceptor-carbenoids (Fig. 14.1a) [16]. This section introduces the range of vinyl, aryl, alkynyl, and heteroaryl functionalities that have been used as donor groups in this chemistry. Also, chiral auxiliaries and chiral catalysts that achieve high asymmetric induction in this chemistry are described [25]. The next two sections cover chemistry that is unique to the vinylcarbenoid system, namely [3-t4] cycloaddition with dienes (Fig. 14.1b see also Section 14.3) [13] and [3-1-2] cycloaddition with vinyl... [Pg.302]


See other pages where Stereoselectivity chiral catalysts is mentioned: [Pg.60]    [Pg.380]    [Pg.41]    [Pg.14]    [Pg.219]    [Pg.454]    [Pg.987]    [Pg.162]    [Pg.275]    [Pg.1037]    [Pg.3]    [Pg.10]    [Pg.149]    [Pg.298]    [Pg.1166]    [Pg.167]    [Pg.84]    [Pg.38]    [Pg.671]    [Pg.1122]    [Pg.1136]    [Pg.1194]    [Pg.519]    [Pg.542]    [Pg.284]    [Pg.3]    [Pg.143]    [Pg.70]    [Pg.91]    [Pg.309]    [Pg.312]   
See also in sourсe #XX -- [ Pg.279 , Pg.280 ]




SEARCH



Catalyst stereoselective

Chiral catalysts

Chiral compounds catalyst controlled stereoselectivity

Chiral stereoselectivity

Stereoselective control chiral catalysts

© 2024 chempedia.info