Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stereochemistry carbon atom

Figure 3-22 shows a nucleophilic aliphatic substitution with cyanide ion as a nucleophile, i his reaction is assumed to proceed according to the S f2 mechanism with an inversion in the stereochemistry at the carbon atom of the reaction center. We have to assign a stereochemical mechanistic factor to this reaction, and, clearly, it is desirable to assign a mechanistic factor of (-i-1) to a reaction with retention of configuration and (-1) to a reaction with inversion of configuration. Thus, we want to calculate the parity of the product, of 3 reaction from the parity of the... [Pg.198]

The stereochemistry of reactions can also be treated by permutation group theory for reactions that involve the transformation of an sp carbon atom center into an sp carbon atom center, as in additions to C=C bonds, in elimination reactions, or in eIcctrocycHc reactions such as the one shown in Figure 3-21. Details have been published 3l]. [Pg.199]

A useful catalyst for asymmetric aldol additions is prepared in situ from mono-0> 2,6-diisopropoxybenzoyl)tartaric acid and BH3 -THF complex in propionitrile solution at 0 C. Aldol reactions of ketone enol silyl ethers with aldehydes were promoted by 20 mol % of this catalyst solution. The relative stereochemistry of the major adducts was assigned as Fischer- /ir o, and predominant /i -face attack of enol ethers at the aldehyde carbonyl carbon atom was found with the (/ ,/ ) nantiomer of the tartaric acid catalyst (K. Furuta, 1991). [Pg.61]

Cholesterol was isolated m the eighteenth century but its structure is so complex that Its correct constitution was not determined until 1932 and its stereochemistry not verified until 1955 Steroids are characterized by the tetracyclic ring system shown m Figure 26 9a As shown m Figure 26 9b cholesterol contains this tetracyclic skeleton modified to include an alcohol function at C 3 a double bond at C 5 methyl groups at C 10 and C 13 and a C Hn side chain at C 17 Isoprene units may be discerned m var lous portions of the cholesterol molecule but the overall correspondence with the iso prene rule is far from perfect Indeed cholesterol has only 27 carbon atoms three too few for It to be classed as a tnterpene... [Pg.1093]

A novel technique for dating archaeological samples called ammo acid racemiza tion (AAR) IS based on the stereochemistry of ammo acids Over time the configuration at the a carbon atom of a protein s ammo acids is lost m a reaction that follows first order kinetics When the a carbon is the only chirality center this process corresponds to racemization For an ammo acid with two chirality centers changing the configuration of the a carbon from L to D gives a diastereomer In the case of isoleucme for example the diastereomer is an ammo acid not normally present m proteins called alloisoleucme... [Pg.1116]

Expand your answer to Problem 27 10 by showing the struc tural formula for each dipeptide m a manner that reveals the stereochemistry at the a carbon atom... [Pg.1127]

The reaction of carbon atoms with A-unsubstituted aziridines leads to alkenes and hydrogen cyanide (72IA3455), probably via extrusion from the initially formed adduct (285). The fragmentation does not appear to be concerted, although this would be a symmetry-allowed process, since only about half the alkene formed retains the aziridine stereochemistry in the case of cM-2,3-dimethylaziridine. [Pg.75]

Protonation of the a-carbanion (50), which is formed both in the reduction of enones and ketol acetates, probably first affords the neutral enol and is followed by its ketonization. Zimmerman has discussed the stereochemistry of the ketonization of enols and has shown that in eertain cases steric factors may lead to kinetically controlled formation of the thermodynamically less stable ketone isomer. Steroidal unsaturated ketones and ketol acetates that could form epimeric products at the a-carbon atom appear to yield the thermodynamically stable isomers. In most of the cases reported, however, equilibration might have occurred during isolation of the products so that definitive conclusions are not possible. [Pg.35]

L-Amino acid (Section 27.2) A description of the stereochemistry at the a-carbon atom of a chiral amino acid. The Fischer projection of an a-amino acid has the amino group on the left when the carbon chain is vertical with the carboxyl group at the top. [Pg.1276]

Handedness is also important in organic and biological chemistry, where it arises primarily as a consequence of the tetrahedral stereochemistry of 5p3-hybridized carbon atoms. Many drugs and almost all the molecules in our bodies, for instance, are handed. Furthermore, it is molecular handedness that makes possible the specific interactions between enzymes and their substrates that are so crucial to enzyme function. We ll look at handedness and its consequences in this chapter. [Pg.289]

Because carbohydrates usually have numerous chirality centers, it was recognized long ago that a quick method for representing carbohydrate stereochemistry is needed. In 1891, Emil Fischer suggested a method based on the projection of a tetrahedral carbon atom onto a flat surface. These Fischer projections were soon adopted and are now a standard means of representing stereochemistry at chirality centers, particularly in carbohydrate chemistry. [Pg.975]

Clear evidence in favor of 6.75 being an intermediate came, however, from stereochemistry. If the indazole cyclization takes place at a chiral carbon atom in the exposition of the alkyl group in 6.78, the stereochemistry of the 3-i/-indazole 6.79 can indicate whether the 5-diazo-6-methylene-l,3-cyclohexadiene 6.75 is an intermediate or whether, on the other hand, deprotonation and cyclization are synchronous. In the first case a racemic indazole 6.79 is expected. In the case of a synchronous reaction, however, a stereospecific product, probably with retention of the chirality at Ca, should be observed. [Pg.139]

When enantiomerically pure allyl p-tolyl sulfoxide is deprotonated and then treated with electrophilic 2-cyclopentenone, a conjugate addition occurs forming a new carbon-carbon bond with very high control of absolute stereochemistry (equation 25)65. See also Reference 48. Similarly, using more substituted enantiomerically pure allylic sulfoxides leads to virtually complete diastereocontrol, as exemplified by equations 26 and 27 the double bond geometry in the initial allylic sulfoxide governs the stereochemistry at the newly allylic carbon atom (compare equations 26 vs. 27)66. Haynes and associates67 rationalize this stereochemical result in terms of frontier molecular orbital considerations... [Pg.834]

In this representation of a monosaccharide, the carbon chain is written vertically, with the lowest numbered carbon atom at the top. To define the stereochemistry, each carbon atom is considered in turn and placed in the plane of the paper. Neighbouring carbon atoms are below, and the H and OH groups above the plane of the paper (see below). [Pg.56]

If substitution at the terminal carbon atom of the carbohydrate chain creates a chiral centre, the stereochemistry is indicated by the R.S system. [Pg.89]

Note 2. In the last four examples, new asymmetric centres have been introduced at the carbonyl carbon atom of the aldehyde or ketone that has reacted with the saccharide. When known, the stereochemistry at such a new centre is indicated by use of the appropriate R or S symbol ([13], Section E) placed in parentheses, immediately before the locants of the relevant prefix. [Pg.122]

Note. In the last two examples, carbon atom 1 has become chiral. When known, the stereochemistry at this new chiral centre is indicated by the R system, as specifted in 2-Carb-29. [Pg.124]

When poly(propylene) was first made, it was found to exist in two possible forms. One was similar to poly(ethylene), but had greater rigidity and hardness the other was found to be amorphous and of little strength. The first of these is now known to be isotactic, that is with a regular stereochemistry at each alternating carbon atom. The other is now known to be atactic, that is with a random distribution of different stereochemical arrangements... [Pg.7]

For a thorough understanding of stereochemistry, it is useful to examine molecular models (like those depicted in Fig. 4.1). However, this is not feasible when writing on paper or a blackboard. In 1891, Emil Fischer greatly served the interests of chemistry by inventing the Fischer projection, a method of representing tetrahedral carbon atoms on paper. By this convention, the model is held so that the two bonds in front of the paper are horizontal and those behind the paper are vertical. [Pg.137]


See other pages where Stereochemistry carbon atom is mentioned: [Pg.57]    [Pg.86]    [Pg.313]    [Pg.550]    [Pg.122]    [Pg.4]    [Pg.109]    [Pg.185]    [Pg.163]    [Pg.26]    [Pg.35]    [Pg.34]    [Pg.313]    [Pg.1116]    [Pg.156]    [Pg.320]    [Pg.92]    [Pg.30]    [Pg.224]    [Pg.1006]    [Pg.144]    [Pg.171]    [Pg.347]    [Pg.348]    [Pg.730]    [Pg.843]    [Pg.84]    [Pg.8]   


SEARCH



Carbon stereochemistry

© 2024 chempedia.info