Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Terrace site

When the selectivity of a reaction is controlled by differences in the way molecules are activated on different sites, the probability of the presence of different sites becomes important. An example again can be taken from the activation of CO. For methanation, activation of the CO bond is essential. This will proceed with low barriers at step-edge-type sites. If one is interested in the production of methanol, catalytic surfaces are preferred, which do not allow for easy CO dissociation. This will typically be the case for terrace sites. The selectivity of the reaction to produce methanol will then be given by an expression as in Eq. (1.29a) ... [Pg.23]

In this expression, Xi and Xi are the fractions of terrace versus step-edge sites, ri is net rate of conversion of adsorbed CO to methanol on a terrace site, and t2 is the rate of CO dissociation at a step-edge-type site. Increased CO pressure will also enhance the selectivity, because it will block dissociation of CO. [Pg.23]

In the following we consider nitrogen atoms adsorbed on a ruthenium surface that is not completely flat but has an atomic step for each one hundred terrace atoms in a specific direction. The nitrogen atoms bond stronger to the steps than to the terrace sites by 20 kj mok. The vibrational contributions of the adsorbed atoms can be assumed to be equal for the two types of sites. (Is that a good assumption ) Determine how the coverage of the step sites varies with terrace coverage. [Pg.424]

Hint Write the partition functions for the atoms occupying step and terrace sites and equal their chemical potentials. [Pg.424]

As the crystal surface exposed to the atmosphere is usually not ideal, specific sites exist with even much lower co-ordination numbers. This is shown schematically in Fig. 3.5, which gives a model comprising so-called step, kink and terrace sites (Morrison, 1982). This analysis suggests that even pure metal surfaces contain a wide variety of active sites, which indeed has been confirmed by surface science studies. Nevertheless, catalytic surfaces often behave rather homogeneously. Later it will be discussed why this is the case. In short, the most active sites deactivate easiest and the poorest active sites do not contribute much to the catalytic activity, leaving the average activity sites to play the major role. [Pg.63]

In order to assess the role of the platinum surface structure and of CO surface mobility on the oxidation kinetics of adsorbed CO, we carried out chronoamperometry experiments on a series of stepped platinum electrodes of [n(l 11) x (110)] orientation [Lebedeva et al., 2002c]. If the (110) steps act as active sites for CO oxidation because they adsorb OH at a lower potential than the (111) terrace sites, one would expect that for sufficiently wide terraces and sufficiently slow CO diffusion, the chronoamperometric transient would display a CottreU-hke tailing for longer times owing to slow diffusion of CO from the terrace to the active step site. The mathematical treatment supporting this conclusion was given in Koper et al. [2002]. [Pg.163]

The hydrogenation of para-substituted anilines over rhodium catalysts has been investigated. An antipathetic metal crystallite size effect was observed for the hydrogenation of /Moluidinc suggesting that terrace sites favour the reaction. Limited evidence was found for catalyst deactivation by the product amines. Catalysts with pore diameters less than 13.2 nm showed evidence of diffusion control on the rate of reaction but not the cis trans ratio of the product. [Pg.77]

The dominance of surface defects over terrace sites in catalysis and electrocatalysis had been recognized already in the early stages of surface science. For example,... [Pg.132]

Adsorption of water is thought to occur mainly at steps and defects and is very common on polycrystalline surfaces, and hence the metal oxides are frequently covered with hydroxyl groups. On prolonged exposure, hydroxide formation may proceed into the bulk of the solid in certain cases as with very basic oxides such as BaO. The adsorption of water may either be a dissociative or nondissociative process and has been investigated on surfaces such as MgO, CaO, TiOz, and SrTi03.16 These studies illustrate the fact that water molecules react dissociatively with defect sites at very low water-vapor pressures (< 10 9 torr) and then with terrace sites at water-vapor pressures that exceed a threshold pressure. Hydroxyl groups will be further discussed in the context of Bronsted acids and Lewis bases. [Pg.48]

Figure 6.15. Ion transfer to the terrace site, surface diffusion, and incorporation at kink site. Figure 6.15. Ion transfer to the terrace site, surface diffusion, and incorporation at kink site.
In the discussion of atomistic aspects of electrodepKJsition of metals in Section 6.8 it was shown that in electrodeposition the transfer of a metal ion M"+ from the solution into the ionic metal lattice in the electrodeposition process may proceed via one of two mechanisms (1) a direct mechanism in which ion transfer takes place on a kink site of a step edge or on any site on the step edge (any growth site) or (2) the terrace-site ion mechanism. In the terrace-site transfer mechanism a metal ion is transferred from the solution (OHP) to the flat face of the terrace region. At this position the metal ion is in an adion state and is weakly bound to the crystal lattice. From this position it diffuses onto the surface, seeking a position with lower potential energy. The final position is a kink site. [Pg.189]


See other pages where Terrace site is mentioned: [Pg.124]    [Pg.53]    [Pg.126]    [Pg.338]    [Pg.338]    [Pg.162]    [Pg.179]    [Pg.190]    [Pg.196]    [Pg.200]    [Pg.224]    [Pg.225]    [Pg.229]    [Pg.545]    [Pg.548]    [Pg.70]    [Pg.83]    [Pg.83]    [Pg.416]    [Pg.418]    [Pg.420]    [Pg.10]    [Pg.270]    [Pg.136]    [Pg.123]    [Pg.124]    [Pg.117]    [Pg.212]    [Pg.212]    [Pg.507]    [Pg.353]    [Pg.176]    [Pg.57]    [Pg.59]    [Pg.289]    [Pg.18]    [Pg.101]    [Pg.102]    [Pg.124]   
See also in sourсe #XX -- [ Pg.29 , Pg.78 ]




SEARCH



Terracing

© 2024 chempedia.info