Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Steam, isobutane oxidation

The various sources of isobutylene are C streams from fluid catalytic crackers, olefin steam crackers, isobutane dehydrogenation units, and isobutylene produced by Arco as a coproduct with propylene oxide. Isobutylene concentrations (weight basis) are 12 to 15% from fluid catalytic crackers, 45% from olefin steam crackers, 45 to 55% from isobutane dehydrogenation, and high purity isobutylene coproduced with propylene oxide. The etherification unit should be designed for the specific feedstock that will be processed. [Pg.373]

Figure 14.2 shows the simplified flow sheet of the process, as reported in patents issued to Sumitomo. CO2 is maintained in the recycle loop to act as a ballast component the desired concentration of CO2 is obtained by combustion of CO, while excess CO2 is separated. Methacrolein is separated and recycled to the oxidation reactor. An overall recycle yield of 52% to methacrylic acid is reported, with a recycle conversion of 96% and a per-pass isobutane conversion of 10%. The heat of reaction produced, mainly deriving from the combustion reaction, is recovered as steam. [Pg.269]

A detailed kinetic study of oxidative dehydrogenation of propane, isobutane, n-butane (23 runs) and LPG (27 runs) was conducted over a wide range of partial pressures of pure and mixed hydrocarbons (0-0.3 atm), oxygen (0-0.2 atm) and steam (0.2-0.7) atm and temperature 600-670°C. Oxidation of Hj, CjHg, C H, CH and CO was also tested at 600-650°C. A set of reactions was selected based on the distribution of products ... [Pg.117]

MTBE is produced by reacting methanol with isobutene. Isobutene is contained in the C4 stream from steam crackers and from fluid catalytic cracking m the crude oil-refining process. However, isobutene has been in short supply in many locations. The use of raw materials other than isobutene for MTBE production has been actively sought. Figure 2 describes the reaction network for MTBE production. Isobutene can be made by dehydration of i-butyl alcohol, isomerization of -butenes [73], and isomerization and dehydrogenation of n-butane [74, 75]. t-Butanol can also react with methanol to form MTBE over acid alumina, silica, clay, or zeolite in one step [7678]. t-Butanol is readily available by oxidation of isobutane or, in the future, from syngas. The C4 fraction from the methanol-to-olefins process may be used for MTBE production, and the C5 fraction may be used to make TAME. It is also conceivable that these... [Pg.16]


See other pages where Steam, isobutane oxidation is mentioned: [Pg.99]    [Pg.405]    [Pg.596]    [Pg.21]    [Pg.179]    [Pg.55]    [Pg.334]    [Pg.186]    [Pg.806]   


SEARCH



Isobutane

Isobutanes

Oxidation isobutane

© 2024 chempedia.info