Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Staged reactors

Oxidation Step. A review of mechanistic studies of partial oxidation of propylene has appeared (58). The oxidation process flow sheet (Fig. 2) shows equipment and typical operating conditions. The reactors are of the fixed-bed shell-and-tube type (about 3—5 mlong and 2.5 cm in diameter) with a molten salt coolant on the shell side. The tubes are packed with catalyst, a small amount of inert material at the top serving as a preheater section for the feed gases. Vaporized propylene is mixed with steam and ak and fed to the first-stage reactor. The feed composition is typically 5—7% propylene, 10—30%... [Pg.152]

If necessary, first-stage reactor effluent maybe further cooled to 200—250°C by an iaterstage cooler to prevent homogeneous and unselective oxidation of acroleia taking place in the pipes leading to the second-stage reactor (56,59). [Pg.153]

Several variations of the above process are practiced. In the Sumitomo-Nippon Shokubai process, the effluent from the first-stage reactor containing methacrolein and methacrylic acid is fed directiy to the second-stage oxidation without isolation or purification (125,126). In this process, overall yields are maximized by optimizing selectivity to methacrolein plus methacrylic acid in the first stage. Conversion of isobutjiene or tert-huty alcohol must be high because no recycling of material is possible. In another variation, Asahi Chemical has reported the oxidative esterification of methacrolein directiy to MMA in 80% yield without isolation of the intermediate MAA (127,128). [Pg.253]

A necessary feature of the alkylation reaction section is the use of two reactors the first-stage reactor completes the major part of the alkylation reaction, and in the second-stage reactor the last traces of unsaturated hydrocarbons react, and a sizable portion of the soluble polyaromatics is removed. Modem units with lower-diene-containing feeds employ a single alkylation reactor (79). [Pg.52]

C. R. Cutier and R. B. Hawkins, "AppHcation of a Large Model Predictive Controller to a Hydrocracker Second Stage Reactor," Proceedings of... [Pg.80]

Bubble columns in series have been used to establish the same effective mix of plug-flow and back-mixing behavior required for Hquid-phase oxidation of cyclohexane, as obtained with staged reactors in series. WeU-mixed behavior has been established with both Hquid and air recycle. The choice of one bubble column reactor was motivated by the need to minimize sticky by-products that accumulated on the walls (93). Here, high air rate also increased conversion by eliminating reaction water from the reactor, thus illustrating that the choice of a reactor system need not always be based on compromise, and solutions to production and maintenance problems are complementary. Unlike the Hquid in most bubble columns, Hquid in this reactor was intentionally weU mixed. [Pg.524]

In the second stage, a more active 2inc oxide—copper oxide catalyst is used. This higher catalytic activity permits operation at lower exit temperatures than the first-stage reactor, and the resulting product has as low as 0.2% carbon monoxide. For space velocities of 2000-4000 h , exit carbon monoxide... [Pg.50]

A urea melt is suppHed to a one-stage reactor containing a fluid-bed catalyst. The reactor is heated internally by circulating molten salt. Upon entering the reactor, the urea is converted to melamine by the hot catalyst. [Pg.372]

The need to keep a concave temperature profile for a tubular reactor can be derived from the former multi-stage adiabatic reactor example. For this, the total catalyst volume is divided into more and more stages, keeping the flow cross-section and mass flow rate unchanged. It is not too difficult to realize that at multiple small stages and with similar small intercoolers this should become something like a cooled tubular reactor. Mathematically the requirement for a multi-stage reactor can be manipulated to a different form ... [Pg.203]

In the two-stage operation, the feed is hydrodesulfurized in the first reactor with partial hydrocracking. Reactor effluent goes to a high-pressure separator to separate the hydrogen-rich gas, which is recycled and mixed with the fresh feed. The liquid portion from the separator is fractionated, and the bottoms of the fractionator are sent to the second stage reactor. [Pg.81]

ABB Lummus s RTD consists of a two-stage reactor cyclone system (see Figure 9-2). The riser cyclones (the first stage) are hard-piped to the riser. Attached to the end of each riser cyclone dipleg is a conventional trickle valve as shown in Figure 9-3. Each trickle valve has a small opening to prevent catalyst defluidization, which can be a problem, especially during start-ups. [Pg.284]

Figure 2.5 Possible technological solutions to bioprocess problems a) Fed-batch culture b) Continuous product removal (eg dialysis, vacuum fermentation, solvent extraction, ion exchange etc) c) Two-phase system combined with extractive fermentation (liquid-impelled loop reactor) d) Continuous culture, internal multi-stage reactor e) Continuous culture, dual-stream multi-stage reactor f) Continuous culture with biomass feedback (cell recycling). (See text for further details). Figure 2.5 Possible technological solutions to bioprocess problems a) Fed-batch culture b) Continuous product removal (eg dialysis, vacuum fermentation, solvent extraction, ion exchange etc) c) Two-phase system combined with extractive fermentation (liquid-impelled loop reactor) d) Continuous culture, internal multi-stage reactor e) Continuous culture, dual-stream multi-stage reactor f) Continuous culture with biomass feedback (cell recycling). (See text for further details).
In all tests, the temperature in the first- and second-stage reactors was kept within the necessary temperature limits of 288°-482°C. Because the carbon monoxide concentration was low in many of the tests, the second stage was not used to full capacity as is indicated by the temperature rise in runs 23, 24, and 27. The temperature profile shows the characteristic rise to a steady value. With the space velocities used (<5000 ft3/ft3 hr), the temperature profile is fully developed in the first stage within 30.0 in. of the top of the catalyst bed. A characteristic dip in temperature was observed over the first 8-10 in. of the catalyst bed in all runs. This temperature profile may indicate the presence of deactivated catalyst in this region, but, until the catalyst can be removed for examination, the cause of the temperature drop cannot be determined. There is no evidence that this low temperature zone is becoming progressively deeper. It is possible that an unrecorded brief upset in the purification system may have poisoned some of the top catalyst layers. [Pg.143]

First-stage reactor conditions space velocity, vol/vol hr feed gas flow rate, lb/hr recycle flow rate, lb/hr recycle molecular weight reactor temperatures, °C... [Pg.143]

In actual practice the temp in the region of the converging streams of the second stage reactor is kept between 90 and 120°, and the rest of the tubular reactor between 110 and 140°. [Pg.238]

By maintaining the first-stage reactor just beyond the phase inversion point, the dispersed rubber phase is relatively rich in dissolved styrene. As polymerization subsequently proceeds in the LFR s, the dissolved styrene will react to form either a graft copolymer with the rubber or a homopolymer. The latter will remain within the rubber droplet as a separate occluded phase. Achieving the first-stage reactor conversion and temperature by recycling a portion of the hot second reactor effluent may permit simplification of the first reactor temperature control system. [Pg.106]

Schematic representation of a typical two-stage hydroconversion unit. The reactors contain multiple catalyst beds and quench zones. The second stage reactor is a recycle reactor. Schematic representation of a typical two-stage hydroconversion unit. The reactors contain multiple catalyst beds and quench zones. The second stage reactor is a recycle reactor.
Weight percent profiles through first-stage (left) and second stage reactor of a) alkanes (full fines) and cycloalkanes (dashed fines) and b) aromatic components. Thick lines correspond to C23 finctions, thin lines to 23 fractions. Operating conditions p, 17.5 MPa LHSV 1.67 niL (nv hf molar H2/HC 18 Tmiei 661 K (reactor 1) 622 K (reactor 2). Catalyst NiMo on amorphous silica-alumina. [Pg.57]


See other pages where Staged reactors is mentioned: [Pg.153]    [Pg.153]    [Pg.25]    [Pg.83]    [Pg.86]    [Pg.393]    [Pg.457]    [Pg.341]    [Pg.374]    [Pg.139]    [Pg.522]    [Pg.50]    [Pg.224]    [Pg.281]    [Pg.2070]    [Pg.90]    [Pg.53]    [Pg.56]    [Pg.56]    [Pg.32]    [Pg.9]    [Pg.54]    [Pg.97]    [Pg.135]    [Pg.137]    [Pg.137]    [Pg.138]    [Pg.138]    [Pg.142]    [Pg.144]    [Pg.159]    [Pg.1057]    [Pg.56]   
See also in sourсe #XX -- [ Pg.828 ]

See also in sourсe #XX -- [ Pg.56 ]




SEARCH



Reactor staging

© 2024 chempedia.info