Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stability constants solutions containing

In equation (q) only the fully ionised form of EDTA, i.e. the ion Y4 , has been taken into account, but at low pH values the species HY3, H2Y2, H3 Y and even undissociated H4Y may well be present in other words, only a part of the EDTA uncombined with metal may be present as Y4. Further, in equation (q) the metal ion M"+ is assumed to be uncomplexed, i.e. in aqueous solution it is simply present as the hydrated ion. If, however, the solution also contains substances other than EDTA which can complex with the metal ion, then the whole of this ion uncombined with EDTA may no longer be present as the simple hydrated ion. Thus, in practice, the stability of metal-EDTA complexes may be altered (a) by variation in pH and (b) by the presence of other complexing agents. The stability constant of the EDTA complex will then be different from the value recorded for a specified pH in pure aqueous solution the value recorded for the new conditions is termed the apparent or conditional stability constant. It is clearly necessary to examine the effect of these two factors in some detail. [Pg.59]

EDTA is a very unselective reagent because it complexes with numerous doubly, triply and quadruply charged cations. When a solution containing two cations which complex with EDTA is titrated without the addition of a complex-forming indicator, and if a titration error of 0.1 per cent is permissible, then the ratio of the stability constants of the EDTA complexes of the two metals M and N must be such that KM/KN 106 if N is not to interfere with the titration of M. Strictly, of course, the constants KM and KN considered in the above expression should be the apparent stability constants of the complexes. If complex-forming indicators are used, then for a similar titration error KM/KN z 108. [Pg.312]

In a similar manner, in a solution containing the species Hg2+, HgY2-, MY,n 4)+ and M"+, where Y is the complexing agent EDTA and M"+ is a metallic ion which forms complexes with it, the concentration of the mercury ion is controlled by the stability constants of the complex ions MYhigh stability constant), and the concentration of the metal ions M"+. Hence, a mercury electrode placed in this solution will acquire a potential which is determined by the concentration of the ion M"+. [Pg.549]

Cathodic electrodeposition of microcrystalline cadmium-zinc selenide (Cdi i Zn i Se CZS) films has been reported from selenite and selenosulfate baths [125, 126]. When applied for CZS, the typical electrocrystallization process from acidic solutions involves the underpotential reduction of at least one of the metal ion species (the less noble zinc). However, the direct formation of the alloy in this manner is problematic, basically due to a large difference between the redox potentials of and Cd " couples [127]. In solutions containing both zinc and cadmium ions, Cd will deposit preferentially because of its more positive potential, thus leading to free CdSe phase. This is true even if the cations are complexed since the stability constants of cadmium and zinc with various complexants are similar. Notwithstanding, films electrodeposited from typical solutions have been used to study the molar fraction dependence of the CZS band gap energy in the light of photoelectrochemical measurements, along with considerations within the virtual crystal approximation [128]. [Pg.107]

Quantitation is performed by the calibration technique. Construct a new calibration curve with thenylchlor standard solutions for each set of analyses. The thenylchlor peak usually appears at a retention time around 4.5 min. Plot the peak area against the injected amount of thenylchlor. The injection volume (2 pL) should be kept constant as the peak area varies with the injection volume with NPD. Before injecting the sample solutions, check the stability of sensitivity of the GC system by injecting more than one standard solution containing ca 0.05-2 ng of thenylchlor. Recommendation inject standard solutions and sample solutions alternately rather than constructing the calibration curve in advance. [Pg.588]

The sample solution contains a fixed concentration of supporting electrolyte E" L and a varying concentration of primary salt M X . The ionophore I is confined in the membrane. Only the primary cation can be complexed with the ionophore I (given stoichiometry 1 1 stability constant The complex MI and the anionic site are the lipophilic species that are present only in the membrane phase. In this system, the electroneutrality condition at the membrane bulk leads to... [Pg.456]

To conduct meaningful mechanistic and kinetic studies in alcohol media reliable and simple measurement and control of the solution jjpH is essential. Potentiometric titration is the method of choice for obtaining acid dissociation constants or metal ion complex stability constants and in favorable cases the speciation of mixtures of metal-ion-containing complexes in solution can be proposed.20 Titrations in non-aqueous solvents are not nearly as widely reported as those in aqueous media, particularly in cases with metal ions21 and determination of pH in a non-aqueous solvent referenced to that solvent is complicated due to the lack of a way to relate the electrode EMF readings to absolute jjpH (see footnote and ref. 6) so non-aqueous solvents are generally inconvenient to use22 for detailed studies of reaction mechanisms where pH control is required. [Pg.276]

For a variety of reasons, it is difficult to measure stability constants of metals with Hum, and the use of stability constants measured under a given set of solution conditions (so-called conditional constants ) for a different set of conditions (e.g., at a different pH or different set of metals and Hum concentrations) must be done cautiously. Significant advances were made during the past decade in ways to model metal-Hum binding, and a sufficient variety of conditional binding constants are now available at least to approximate the metal-binding behavior of natural water and soil solutions containing Hum. [Pg.163]

Therefore, in order to obtain information about the nature of the brominating species present in the reaction mixture, and on its stability, spectroscopic measurements were carried out in the absence of olefin on methanolic Br2 solutions containing increasing amount of NaN3. (14) When bromine (4.3 x 10 3 M) and methanolic solution of NaN3 (between 4.7 x 10 2 to 2.37 xlO 1 M) were rapidly mixed in a stopped-flow apparatus, at 25 °C, no kinetic of disappearance of Br2 could be observed, but only the presence of a new absorption band (> ax 316 nm) and its subsequent decrease could be measured. The disappearance of the absorption band followed a first order rate law. The observed kinetic constants are reported in Table I. [Pg.397]

Proton nmr halide anion titrations reveal that the ethyl- [79], propyl-[80] and butyl- [81] linked derivatives (Fig. 43) form complexes of 1 1 stoichiometry in acetonitrile solution. Stability constant determinations suggest that the ethyl derivative [79] exhibits selectivity for the chloride anion in preference to bromide or iodide. As the chain length increases, so the selectivity for chloride decreases and also the magnitude of the stability constant which is evidence for an anionic chelate effect with the chloride anion. Receptors containing larger aryl [81], [83], [84] and alkylamino spacers [85] (Fig. 43) form complexes of 2 1 halide anion receptor stoichiometry. [Pg.56]

Tfie electroless deposition of copper is usually done in solutions containing EDTA as a complexing agent. Tfie stability constant for the CuEDTA complex is... [Pg.167]

Ritchie was the first to directly measure the absolute reactivity of cations toward solvent and added nucleophiles. The cations were highly stabilized examples, triarylmethyl cations bearing stabilizing substituents such as 30 and 31, xanthylium ions (e.g., 32) and tropylium ions (e.g., 33). The feature (and requirement) of these cations was that they had a lifetime in water such that kinetics could be followed by conventional or stopped-flow spectroscopy whereby one solution containing the pre-formed cation was added to a second solution. The time required to mix these solutions was the important factor and limited measurements to cations with lifetimes longer than several milliseconds. The lifetimes in water for 30-33 are provided below. Lifetime is defined as the reciprocal of the first-order rate constant for the decay of the cation in solvent. [Pg.16]

Eichhom and his co-workers have thoroughly studied the kinetics of the formation and hydrolysis of polydentate Schiff bases in the presence of various cations (9, 10, 25). The reactions are complicated by a factor not found in the absence of metal ions, i.e, the formation of metal chelate complexes stabilizes the Schiff bases thermodynamically but this factor is determined by, and varies with, the central metal ion involved. In the case of bis(2-thiophenyl)-ethylenediamine, both copper (II) and nickel(II) catalyze the hydrolytic decomposition via complex formation. The nickel (I I) is the more effective catalyst from the viewpoint of the actual rate constants. However, it requires an activation energy cf 12.5 kcal., while the corresponding reaction in the copper(II) case requires only 11.3 kcal. The values for the entropies of activation were found to be —30.0 e.u. for the nickel(II) system and — 34.7 e.u. for the copper(II) system. Studies of the rate of formation of the Schiff bases and their metal complexes (25) showed that prior coordination of one of the reactants slowed down the rate of formation of the Schiff base when the other reactant was added. Although copper (more than nickel) favored the production of the Schiff bases from the viewpoint of the thermodynamics of the overall reaction, the formation reactions were slower with copper than with nickel. The rate of hydrolysis of Schiff bases with or/Zw-aminophenols is so fast that the corresponding metal complexes cannot be isolated from solutions containing water (4). [Pg.162]

The above use of "stable coexisting minerals" is of course based upon the fundamental consideration that the chemical system is "closed" that is, the chemical components K, Si and OH are "inert", their relative proportions, mass, in the system determines the phases formed. This can be assumed valid for many argillaceous sediments and rocks. However, in some geological environments, aqueous solutions containing alkalis and hydrogen ions in various concentrations (whose activities, therefore, are variables but constant throughout a given system) react with kaolinite or other minerals to influence its stability under otherwise constant physical and chemical parameters. [Pg.32]


See other pages where Stability constants solutions containing is mentioned: [Pg.1710]    [Pg.204]    [Pg.168]    [Pg.127]    [Pg.51]    [Pg.253]    [Pg.384]    [Pg.386]    [Pg.15]    [Pg.634]    [Pg.656]    [Pg.154]    [Pg.180]    [Pg.140]    [Pg.174]    [Pg.274]    [Pg.320]    [Pg.323]    [Pg.236]    [Pg.279]    [Pg.259]    [Pg.82]    [Pg.14]    [Pg.31]    [Pg.25]    [Pg.385]    [Pg.489]    [Pg.398]    [Pg.405]    [Pg.425]    [Pg.156]    [Pg.255]    [Pg.325]    [Pg.200]    [Pg.165]    [Pg.747]    [Pg.91]   


SEARCH



Constant solution

Solutes containing

Stability constants

Stabilizing solutes

© 2024 chempedia.info