Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

SSRIs inhibitors

Regulation of mood, sleep, and aggression have all been shown to involve the serotoninergic system (17-19), and most antidepressant drugs currently being used inhibit 5-HT reuptake and/or act on 5-HT receptors (of which there are several subtypes). 5-HT is produced centrally from the amino acid tryptophan, and depressed mood can be induced experimentally by acute tryptophan depletion in healthy individuals. This effect is accentuated in those with a family history of depression (18-21). Similarly, depressive relapse can be initiated in individuals treated with MAO inhibitors or selective serotonin reuptake (SSRI) inhibitors by depleting tryptophan (22, 23). [Pg.2315]

There are several SSRI inhibitors. Their chemical structures are different but they have similar modes of action, namely binding to the SERT. However, they have different pharmacokinetic parameters such as half-life, and differences in adverse effects and drug interactions [54]. Fluoxetine was the first drug of the class, approved in the U.S. in 1987. It is a chiral molecule and the racemic mixture is used as the hydrochloride salt (Prozac , Lilly). It has been approved and marketed in more than 90 countries and used by more than... [Pg.199]

Beginning in the 1960s, ben2odia2epiae anxiolytics and hypnotics rapidly became the standard prescription dmg treatment. In the 1980s, buspkone [36505-84-7] (3), which acts as a partial agonist at the serotonin [50-67-9] (5-hydroxytryptamine, 5-HT) type lA receptor, was approved as treatment for generali2ed anxiety. More recently, selective serotonin reuptake inhibitors (SSRIs) have been approved for therapy of panic disorder and obsessive—compulsive behavior. [Pg.218]

SSRIs are well tolerated. Adverse effects for compounds in this class include nervousness, tremor, dizziness, headache, insomnia, sexual dysfunction, nausea, and diarrhea. In addition, the tricycHc antidepressant clomipramine (33), which is a potent nonselective serotonin reuptake inhibitor, is approved for treatment of obsessive—compulsive disorder. [Pg.227]

Treatment of Major Depression. Dmgs commonly used for the treatment of depressive disorders can be classified heuristicaHy iato two main categories first-generation antidepressants with the tricycHc antidepressants (TCAs) and the irreversible, nonselective monoamine—oxidase (MAO) inhibitors, and second-generation antidepressants with the atypical antidepressants, the reversible inhibitors of monoamine—oxidase A (RIMAs), and the selective serotonin reuptake inhibitors (SSRIs). Table 4 fists the available antidepressants. [Pg.229]

SSRIs are widely used for treatment of depression, as well as, for example, panic disorders and obsessive—compulsive disorder. These dmgs are well recognized as clinically effective antidepressants having an improved side-effect profile as compared to the TCAs and irreversible MAO inhibitors. Indeed, these dmgs lack the anticholinergic, cardiovascular, and sedative effects characteristic of TCAs. Their main adverse effects include nervousness /anxiety, nausea, diarrhea or constipation, insomnia, tremor, dizziness, headache, and sexual dysfunction. The most commonly prescribed SSRIs for depression are fluoxetine (31), fluvoxamine (32), sertraline (52), citalopram (53), and paroxetine (54). SSRIs together represent about one-fifth of total worldwide antidepressant unit sales. [Pg.232]

MDMA overdose as well as the concomitant consumption of selective serotonin reuptake inhibitors (SSRI) with other dmgs that exert serotoninergic effects (such as inhibitors of monoamine oxidase) can rapidly lead to the serotonin syndrome. Its symptoms, which are reversible upon cessation, of the drug include confusion, muscle rigidity in the lower limbs, and hyperthermia suggesting an acute reaction to serotonin overflow in the CNS. Blocking the function of SERT outside the brain causes side effects (e.g., nausea), which may be due to elevated 5HT however , impairment of transporter function is not equivalent to direct activation of 5HT recqrtors in causing adverse effects such as fibrosis and pulmonary hypertension. [Pg.841]

Selective serotonine reuptake inhibitor (SSRI) is an abbreviation for the class of antidepressants known as the Selective Serotonin Reuptake Inhibitors. Examples of SSRIs include fluoxetine, paroxetine, citalopram, and sertraline. These drugs selectively inhibit the serotonin transporter thus prolonging the synaptic lifespan of the neurotransmitter serotonin. [Pg.1113]

Indeed, 5-HT is also a substrate for the 5-HT transporter, itself an important player in the treatment of depression, and more recently for the whole range of anxiety disorders spectrum (GAD, OCD, social and other phobias, panic and post-traumatic stress disorders). It is the target for SSRIs (selective serotonin reuptake inhibitors) such as fluoxetine, paroxetine, fluvoxamine, and citalopram or the more recent dual reuptake inhibitors (for 5-HT and noradrenaline, also known as SNRIs) such as venlafaxine. Currently, there are efforts to develop triple uptake inhibitors (5-HT, NE, and DA). Further combinations are possible, e.g. SB-649915, a combined 5-HTia, 5-HT1b, 5-HT1d inhibitor/selective serotonin reuptake inhibitor (SSRI), is investigated for the treatment of major depressive disorder. [Pg.1124]

The main focus of pharmacoeconomic studies of antidepressants has inevitably fallen on comparisons between tricyclic antidepressants (TCAs) and the more expensive selective serotonin reuptake inhibitors (SSRIs). Few data are available for comparisons within the SSRIs or for newer antidepressants. [Pg.45]

CCOHTA] Canadian Coordinating Office for Health Technology Assessment (1997). Selective Serotonin Re-uptake Inhibitors (SSRIs) for Major DepressionyVdJxll The Cost-... [Pg.52]

Schuldiner, S (1998) Vesicular neurotransmitter transporters. In Neurotransmitter Transporters Structure, Function, and Regulation (Ed. Reith, MEA), Humana Press, Totowa, NJ, pp. 215-240. Stanford, SC (1995) Central noradrenergic neurones and stress. Pharmac. Ther. 68 297-342. Stanford, SC (1999) SSRI-induced changes in catecholaminergic transmission. In Selective Serotonin Reuptake Inhibitors (SSRIs) Past, Present and Future (Ed. Stanford, SC), RG Landes Co., Austin, TX, pp. 147-170. [Pg.186]

Recent evidence indicates that the 5-HT transporter is subject to post-translational regulatory changes in much the same way as neurotransmitter receptors (Blakeley et al. 1998). Protein kinase A and protein kinase C (PKC), at least, are known to be involved in this process. Phosphorylation of the transporter by PKC reduces the Fmax for 5-HT uptake and leads to sequestration of the transporter into the cell, suggesting that this enzyme has a key role in its intracellular trafficking. Since this phosphorylation is reduced when substrates that are themselves transported across the membrane bind to the transporter (e.g. 5-HT and fi -amphetamine), it seems that the transport of 5-HT is itself linked with the phosphorylation process. Possibly, this process serves as a homeostatic mechanism which ensures that the supply of functional transporters matches the demand for transmitter uptake. By contrast, ligands that are not transported (e.g. cocaine and the selective serotonin reuptake inhibitors (SSRIs)) prevent the inhibition of phosphorylation by transported ligands. Thus, such inhibitors would reduce 5-HT uptake both by their direct inhibition of the transporter and by disinhibition of its phosphorylation (Ramamoorthy and Blakely 1999). [Pg.195]

Stanford, SC (1999) SSRI-induced changes in catecholaminergic transmission. In Selective Serotonin Reuptake Inhibitors (SSRIs) Past, Present and Future, Ron Landes Bioscience, Austin, TX, pp. 148-170. [Pg.424]

Figure 20.5 The chemical structure of the selective serotonin reuptake inhibitors (SSRIs)... Figure 20.5 The chemical structure of the selective serotonin reuptake inhibitors (SSRIs)...
Paroxetine is the most potent inhibitor of 5-HT reuptake but, in terms of distinguishing one compound from another, their preferential selectivity for inhibition of 5-HT rather than noradrenaline reuptake is the key criterion. Citalopram is by far the most selective in vitro (1500-3000-fold) and fluoxetine, the most frequently prescribed SSRI in the UK, is the least selective of all these agents (see Stanford 1999). In fact, it is worth questioning whether fluoxetine is a true SSRI at all. [Pg.440]

Figure 20.6 Schematic representation of the effects of 5-HT reuptake inhibitors on serotonergic neurons, (a) 5-HT is released at the somatodendritic level and by proximal segments of serotonergic axons within the Raphe nuclei and taken up by the 5-HT transporter. In these conditions there is little tonic activation of somatodendritic 5-HTia autoreceptors. At nerve terminals 5-HTib receptors control the 5-HT synthesis and release in a local manner, (b) The blockade of the 5-HT transporter at the level of the Raphe nuclei elevates the concentration of extraneuronal 5-HT to an extent that activates somatodendritic autoreceptors (5-HTia). This leads to neuronal hyperpolarisation, reduction of the discharge rate and reduction of 5-HT release by forebrain terminals, (c) The exposure to an enhanced extracellular 5-HT concentration produced by continuous treatment with SSRIs desensitises Raphe 5-HTia autoreceptors. The reduced 5-HTia function enables serotonergic neurons to recover cell firing and terminal release. Under these conditions, the SSRI-induced blockade of the 5-HT transporter in forebrain nerve terminals results in extracellular 5-HT increases larger than those observed after a single treatment with SSRIs. (Figure and legend taken from Hervas et al. 1999 with permission)... Figure 20.6 Schematic representation of the effects of 5-HT reuptake inhibitors on serotonergic neurons, (a) 5-HT is released at the somatodendritic level and by proximal segments of serotonergic axons within the Raphe nuclei and taken up by the 5-HT transporter. In these conditions there is little tonic activation of somatodendritic 5-HTia autoreceptors. At nerve terminals 5-HTib receptors control the 5-HT synthesis and release in a local manner, (b) The blockade of the 5-HT transporter at the level of the Raphe nuclei elevates the concentration of extraneuronal 5-HT to an extent that activates somatodendritic autoreceptors (5-HTia). This leads to neuronal hyperpolarisation, reduction of the discharge rate and reduction of 5-HT release by forebrain terminals, (c) The exposure to an enhanced extracellular 5-HT concentration produced by continuous treatment with SSRIs desensitises Raphe 5-HTia autoreceptors. The reduced 5-HTia function enables serotonergic neurons to recover cell firing and terminal release. Under these conditions, the SSRI-induced blockade of the 5-HT transporter in forebrain nerve terminals results in extracellular 5-HT increases larger than those observed after a single treatment with SSRIs. (Figure and legend taken from Hervas et al. 1999 with permission)...

See other pages where SSRIs inhibitors is mentioned: [Pg.483]    [Pg.483]    [Pg.227]    [Pg.232]    [Pg.237]    [Pg.240]    [Pg.468]    [Pg.469]    [Pg.112]    [Pg.788]    [Pg.841]    [Pg.1502]    [Pg.281]    [Pg.92]    [Pg.119]    [Pg.199]    [Pg.322]    [Pg.333]    [Pg.64]    [Pg.94]    [Pg.195]    [Pg.395]    [Pg.415]    [Pg.439]    [Pg.439]   


SEARCH



Monoamine oxidase inhibitors SSRIs

SSRIs

SSRIs reuptake inhibitors

Selective serotonin re-uptake inhibitors SSRIs)

Selective serotonin receptor inhibitor (SSRI

Selective serotonin reuptake inhibitors (SSRIs side effects

Selective serotonin reuptake inhibitors SSRIs)

Specific serotonin reuptake inhibitors (SSRIs

Synaptosomal Serotonin Uptake and Its Selective Inhibitors (SSRI)

© 2024 chempedia.info