Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spin coating, development

The material can be patterned for microdevice applications. The surfaces have excellent resistance to solvents, water, acids, and bases. Typically materials can be soaked in strong solvents for the unimplanted polymer for many hours and demonstrate minimal changes in electrical properties. Specifically, the implant layer remains unchanged through photoresist spin coating, developing, and etching. The implant layer can usually be etched by an plasma. [Pg.1013]

The pursuit of further miniaturization of electronic circuits has made submicrometer resolution Hthography a cmcial element in future computer engineering. LB films have long been considered potential candidates for resist appHcations, because conventional spin-coated photoresist materials have large pinhole densities and variations of thickness. In contrast, LB films are two-dimensional, layered, crystalline soHds that provide high control of film thickness and are impermeable to plasma down to a thickness of 40 nm (46). The electron beam polymerization of CO-tricosenoic acid monolayers has been mentioned. Another monomeric amphiphile used in an attempt to develop electron-beam-resist materials is a-octadecylacryUc acid (8). [Pg.534]

Organic coatings are also possible. The classic example is the paralene process where a cyclic dimer of p-xylene is thermally decomposed at about 850°C to form /i-xylene free radicals that polymerize into a conformal film when deposited on a solid surface. Other examples of polymerization from a deposited vapor have been developed, and advocates believe that this technology will replace spin coating of silicon wafers. [Pg.426]

Phthalocyanine-based dyes are especially useful for CD-R, as the chromophore absorption band falls in the desirable spectral range, and they are noted for excellent photostability. Unlike cyanine dyes, phthalocyanines tend to have very poor solubility, particularly in solvents such as alcohols and aliphatic hydrocarbons (which do not attack polycarbonate and are therefore used for spin coating). Therefore, the main barrier to the wider use of these dyes is the relatively high cost of synthesizing soluble derivatives. Suitable modifications to the Pc core which have been developed, notably by Mitsui Toatsu, are shown in Scheme 7. The bulky R groups reduce undesirable molecular association (which in turn lower the extinction coefficient and hence reflectivity), whereas partial bromination allows fine-tuning of the film absorbance and reflectivity. The metal atom influences the position of the absorption band, the photostability, and the efficiency of the radiationless transition from the excited state.199 This material is marketed by Ciba as Supergreen.204... [Pg.609]

Fig. 12.7 InGaAsP/InP multi quantum well semiconductor structure process (a) Si02 etch mask deposition (b) PMMA spin coating (c) E beam lithography and develop (d) Si02 etch (e) PMMA stripping (f) InGaAsP membrane etch (g) Si02 stripping (h) Chip flipping and bonding to sapphire (i) InP substrate etch (j) Adhesive etch... Fig. 12.7 InGaAsP/InP multi quantum well semiconductor structure process (a) Si02 etch mask deposition (b) PMMA spin coating (c) E beam lithography and develop (d) Si02 etch (e) PMMA stripping (f) InGaAsP membrane etch (g) Si02 stripping (h) Chip flipping and bonding to sapphire (i) InP substrate etch (j) Adhesive etch...
The first CEM system described by Griffing and West (84) consisted of an organic dye dispersed in an inert polymer film that is spin coated onto the surface of a resist and subsequently removed following exposure but prior to resist development. The chemistry of this system is based on the photoisomerization of an aromatic dye to an oxaziridine (87) (Figure 10). Other workers have evaluated polysilanes (88) and diazonium salt chemistry (89,90) for CEM applications. [Pg.15]

The polymers 17b and 17a+b were dissolved in dimethylformamide by 10%(w/w) and were spin coated onto a silicon wafer. The thickness of the film was found to be 0.3 fi m. The minimum required energy for complete removal of the photoresist layer after development, versus the... [Pg.313]

CEL dye. A CEL solution was obtained by dissolving poly(N-vinylpyrrolidone) (PVP) (7 g) and Dl (5.8 g) in 50 wt% aqueous acetic acid. (87.2 g). The CEL layer was spin-coated onto a photoresist, RI-7000P (Hitachi Chemical Co.), and baked at 80T for 20 minutes. Exposure was performed with an in-house i-line reduction projection aligner. The resist was developed in a 2. 38 wt% tetramethylammonium hydroxide aqueous solution. The film thickness was measured with an Alpha-step 200 (Tencor)... [Pg.320]

Photoacid generator. D1 (4 wt%) was mixed with poly(glycidyl methacrylate) (PGMA) (20 wt%) in ethyl cellosolve acetate. The mixture was spin-coated on a silicon wafer and baked at 80V for 1 minute. Exposure was performed with a 600-W Xe-Hg lamp in conjunction with a UVD2 filter. The resist was developed in a mixture of methyl ethyl ketone to ethanol (7/1 w/w). [Pg.321]

Fig. 7 Novel patternable block copolymers to achieve spatially controlled nanostructures, a An asymmetric PaMS-fc-PHS copolymer/photoacid generator/crosslinker solution was spin-coated on a silicon substrate and formed vertical PaMS cylinders due to rapid solvent evaporation, b 248 nm stepper exposure and subsequent development to form micropatterns with features as small as 400 nm. c Strong UV irradiation under high vacuum to remove PaMS, thus generating patterned nanochannels... Fig. 7 Novel patternable block copolymers to achieve spatially controlled nanostructures, a An asymmetric PaMS-fc-PHS copolymer/photoacid generator/crosslinker solution was spin-coated on a silicon substrate and formed vertical PaMS cylinders due to rapid solvent evaporation, b 248 nm stepper exposure and subsequent development to form micropatterns with features as small as 400 nm. c Strong UV irradiation under high vacuum to remove PaMS, thus generating patterned nanochannels...

See other pages where Spin coating, development is mentioned: [Pg.95]    [Pg.95]    [Pg.315]    [Pg.330]    [Pg.152]    [Pg.313]    [Pg.290]    [Pg.335]    [Pg.268]    [Pg.382]    [Pg.197]    [Pg.158]    [Pg.295]    [Pg.147]    [Pg.245]    [Pg.157]    [Pg.92]    [Pg.53]    [Pg.132]    [Pg.461]    [Pg.511]    [Pg.511]    [Pg.187]    [Pg.30]    [Pg.53]    [Pg.536]    [Pg.18]    [Pg.43]    [Pg.81]    [Pg.111]    [Pg.150]    [Pg.170]    [Pg.154]    [Pg.371]    [Pg.134]    [Pg.64]    [Pg.81]    [Pg.47]    [Pg.25]    [Pg.245]    [Pg.590]   
See also in sourсe #XX -- [ Pg.433 ]




SEARCH



Coatings spin-coated

© 2024 chempedia.info