Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spherulites melting

The change of four-lobe to an intense isotropic scattering cannot be accounted for exclusively in terms of the spherulite melting, since there is a good chance that the phase separation may be involved (Figure 5). Since the phase behavior is extremely complex, only the time-resolved light scattering results at the 10 wt7. concentration will be presented here. [Pg.273]

The purposes of this study were to determine what chemical and physical structures are present in polyepichlorohydrin and to correlate these structures with the crystallization rates observed microscopically and dilatometrically. Crystallization rates were shown to be an extremely sensitive way of characterizing these polymers. For example, the study revealed that the crystalline polyepichlorohydrins examined consisted of isotactic sequences that can crystallize as two different kinds of spheru-lites, arbitrarily called Type I and Type II. The two types can cocrystallize. The polymers that crystallize most rapidly and that have the highest melting temperature have some optical activity. Their films contain predominantly Type II spherulites. Polymers that contain Type I spherulites melt lower and show little or no optical activity. These polymers are racemic mixtures. [Pg.84]

Amorphous stereotactic polymers can crystallise, in which condition neighbouring chains are parallel. Because of the unavoidable chain entanglement in the amorphous state, only modest alignment of amorphous polymer chains is usually feasible, and moreover complete crystallisation is impossible under most circumstances, and thus many polymers are semi-crystalline. It is this feature, semicrystallinity, which distinguished polymers most sharply from other kinds of materials. Crystallisation can be from solution or from the melt, to form spherulites, or alternatively (as in a rubber or in high-strength fibres) it can be induced by mechanical means. This last is another crucial difference between polymers and other materials. Unit cells in crystals are much smaller than polymer chain lengths, which leads to a unique structural feature which is further discussed below. [Pg.311]

Usually, crystallization of flexible-chain polymers from undeformed solutions and melts involves chain folding. Spherulite structures without a preferred orientation are generally formed. The structure of the sample as a whole is isotropic it is a system with a large number of folded-chain crystals distributed in an amorphous matrix and connected by a small number of tie chains (and an even smaller number of strained chains called loaded chains). In this case, the mechanical properties of polymer materials are determined by the small number of these ties and, hence, the tensile strength and elastic moduli of these polymers are not high. [Pg.211]

A further increase in extension leads to irreversible changes which immediately precede the transition of the polymer into the oriented state. During this transition, the spherulites undergo considerable structural changes and are thus converted qualitatively into different structural elements i.e. macrofibrils4). After a certain critical elongation has been attained, the initial crystallites collapse and melt and a new oriented structure is formed in which the c axes of crystals are oriented in the direction of extension. [Pg.212]

We can nucleate crystallization from the melt by incorporating finely ground inorganic crystalline compounds such as silica. Nucleation of injection molded nylons has three primary effects it raises the crystallization temperature, increases the crystallization rate, and reduces the average spherulite size. The net effect on morphology is increased crystallinity. This translates into improved abrasion resistance and hardness, at the expense of lower impact resistance and reduced elongation at break,... [Pg.367]

Figure 5 Electron micrograph of a portion of melt crystallised polyethylene spherulite by transmission electron microscopy (TEM) showing lamellae. Reproduced from Ref. [3] with permission of John Wiley Sons, Inc. Figure 5 Electron micrograph of a portion of melt crystallised polyethylene spherulite by transmission electron microscopy (TEM) showing lamellae. Reproduced from Ref. [3] with permission of John Wiley Sons, Inc.
Figure 11 Left Spherulites of a Ziegler-Natta isotactic poly(propylene) with Mw = 271,500 g/mol and mmmm — 0.95, isothermally crystallized at 148°C. Right Banded spherulites of a linear polyethylene with Mw = 53,600 g/mol slowly cooled from the melt. Figure 11 Left Spherulites of a Ziegler-Natta isotactic poly(propylene) with Mw = 271,500 g/mol and mmmm — 0.95, isothermally crystallized at 148°C. Right Banded spherulites of a linear polyethylene with Mw = 53,600 g/mol slowly cooled from the melt.
Figure 17 Isothermal melting of Ziegler-Natta isotactic poly(propylene). (a) Spherulites with mixed birefringence at Tc = 148°C. The top middle figure displays the melting for the same thermal history, (b) Subsequent to crystallization, the temperature was raised to 171°C spherulites acquire negative birefringence, (c), (d) and (e) Isothermal melting at 171°C for 80, 200 and 300 min, respectively. Reproduced with permission from W.T. Huang, Dissertation, Florida State University, 2005. (See Color Plate Section at the end of this book.)... Figure 17 Isothermal melting of Ziegler-Natta isotactic poly(propylene). (a) Spherulites with mixed birefringence at Tc = 148°C. The top middle figure displays the melting for the same thermal history, (b) Subsequent to crystallization, the temperature was raised to 171°C spherulites acquire negative birefringence, (c), (d) and (e) Isothermal melting at 171°C for 80, 200 and 300 min, respectively. Reproduced with permission from W.T. Huang, Dissertation, Florida State University, 2005. (See Color Plate Section at the end of this book.)...
Psarski et al. reported the effects of the entanglement on the lateral growth of PE [51]. They showed that the lateral growth rate of the spherulite V from the melt of ECSCs is larger than that from the melt of FCCs. They explained this with a model where ve of the melt of ECSCs may be smaller than that of the melt of FCCs. However, they did not show the ve dependence of V. [Pg.172]

The formation of isolated FCSCls was confirmed from the melt of samples with different l (ECSCs-melt-FCSC or FCCs-melt-FCSC). The morphology is the same as the usual one of spherulite or axialite, as reported by Toda [47], irrespective of the morphology before melting. [Pg.174]


See other pages where Spherulites melting is mentioned: [Pg.27]    [Pg.200]    [Pg.227]    [Pg.27]    [Pg.200]    [Pg.227]    [Pg.302]    [Pg.337]    [Pg.52]    [Pg.219]    [Pg.271]    [Pg.489]    [Pg.571]    [Pg.312]    [Pg.371]    [Pg.422]    [Pg.143]    [Pg.73]    [Pg.304]    [Pg.12]    [Pg.211]    [Pg.237]    [Pg.238]    [Pg.195]    [Pg.376]    [Pg.376]    [Pg.782]    [Pg.365]    [Pg.256]    [Pg.275]    [Pg.281]    [Pg.757]    [Pg.185]    [Pg.187]    [Pg.188]    [Pg.225]    [Pg.226]    [Pg.227]    [Pg.228]    [Pg.231]    [Pg.57]    [Pg.267]   
See also in sourсe #XX -- [ Pg.76 ]




SEARCH



Crystallization from the melt and growth of spherulites

Growth Rate of Miscible Polymer Blend Spherulites Crystallized Isothermally from the Melt by Polarizing Optical Microscopy

Growth Rate of Polymer Spherulites Crystallized Isothermally from the Melt by Polarizing Optical Microscopy

Spherulite

Spherulites

Spherulites equilibrium melting

Spherulitic

Spherulitic crystallisation of polymers from the melt

© 2024 chempedia.info