Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spectroscopy vibration-rotational

ELECTRONIC SPECTROSCOPY/ VIBRATIONAL, ROTATIONAL RAMAN SPECTROSCOPIES... [Pg.637]

While a laser beam can be used for traditional absorption spectroscopy by measuring / and 7q, the strength of laser spectroscopy lies in more specialized experiments which often do not lend themselves to such measurements. Other techniques are connnonly used to detect the absorption of light from the laser beam. A coimnon one is to observe fluorescence excited by the laser. The total fluorescence produced is nonnally proportional to the amount of light absorbed. It can be used as a measurement of concentration to detect species present in extremely small amounts. Or a measurement of the fluorescence intensity as the laser frequency is scaimed can give an absorption spectrum. This may allow much higher resolution than is easily obtained with a traditional absorption spectrometer. In other experiments the fluorescence may be dispersed and its spectrum detennined with a traditional spectrometer. In suitable cases this could be the emission from a single electronic-vibrational-rotational level of a molecule and the experimenter can study how the spectrum varies with level. [Pg.1123]

Within physical chemistry, the long-lasting interest in IR spectroscopy lies in structural and dynamical characterization. Fligh resolution vibration-rotation spectroscopy in the gas phase reveals bond lengths, bond angles, molecular symmetry and force constants. Time-resolved IR spectroscopy characterizes reaction kinetics, vibrational lifetimes and relaxation processes. [Pg.1150]

Liu K, Brown M G and Saykally R J 1997 Terahertz laser vibration rotation tunneling spectroscopy and dipole moment of a cage form of the water hexamer J. Phys. Chem. A 101 8995-9010... [Pg.1176]

Far-infrared and mid-infrared spectroscopy usually provide the most detailed picture of the vibration-rotation energy levels in the ground electronic state. However, they are not always possible and other spectroscopic methods are also important. [Pg.2447]

We find it convenient to reverse the historical ordering and to stait with (neatly) exact nonrelativistic vibration-rotation Hamiltonians for triatomic molecules. From the point of view of molecular spectroscopy, the optimal Hamiltonian is that which maximally decouples from each other vibrational and rotational motions (as well different vibrational modes from one another). It is obtained by employing a molecule-bound frame that takes over the rotations of the complete molecule as much as possible. Ideally, the only remaining motion observable in this system would be displacements of the nuclei with respect to one another, that is, molecular vibrations. It is well known, however, that such a program can be realized only approximately by introducing the Eckart conditions [38]. [Pg.502]

The treatment of electronic motion is treated in detail in Sections 2, 3, and 6 where molecular orbitals and configurations and their computer evaluation is covered. The vibration/rotation motion of molecules on BO surfaces is introduced above, but should be treated in more detail in a subsequent course in molecular spectroscopy. [Pg.73]

If any atoms have nuclear spin this part of the total wave function can be factorized and the energy treated additively. ft is for these reasons that we can treat electronic, vibrational, rotational and NMR spectroscopy separately. [Pg.20]

We have seen in Section 5.2.1.4 that there is a stack of rotational energy levels associated with all vibrational levels. In rotational spectroscopy we observe transitions between rotational energy levels associated with the same vibrational level (usually v = 0). In vibration-rotation spectroscopy we observe transitions between stacks of rotational energy levels associated with two different vibrational levels. These transitions accompany all vibrational transitions but, whereas vibrational transitions may be observed even when the sample is in the liquid or solid phase, the rotational transitions may be observed only in the gas phase at low pressure and usually in an absorption process. [Pg.147]

Raman scattering is normally of such very low intensity that gas phase Raman spectroscopy is one of the more difficult techniques. This is particularly the case for vibration-rotation Raman spectroscopy since scattering involving vibrational transitions is much weaker than that involving rotational transitions, which were described in Sections 5.3.3 and 5.3.5. For this reason we shall consider here only the more easily studied infrared vibration-rotation spectroscopy which must also be investigated in the gas phase (or in a supersonic jet, see Section 9.3.8). [Pg.173]

Duxbury, G. (1999) Infrared Vibration-Rotation Spectroscopy, John Wiley, Chichester. [Pg.197]

It is important to realize that electronic spectroscopy provides the fifth method, for heteronuclear diatomic molecules, of obtaining the intemuclear distance in the ground electronic state. The other four arise through the techniques of rotational spectroscopy (microwave, millimetre wave or far-infrared, and Raman) and vibration-rotation spectroscopy (infrared and Raman). In homonuclear diatomics, only the Raman techniques may be used. However, if the molecule is short-lived, as is the case, for example, with CuH and C2, electronic spectroscopy, because of its high sensitivity, is often the only means of determining the ground state intemuclear distance. [Pg.257]

There exist a series of beautiful spectroscopy experiments that have been carried out over a number of years in the Lineberger (1), Brauman (2), and Beauchamp (3) laboratories in which electronically stable negative molecular ions prepared in excited vibrational-rotational states are observed to eject their extra electron. For the anions considered in those experiments, it is unlikely that the anion and neutral-molecule potential energy surfaces undergo crossings at geometries accessed by their vibrational motions in these experiments, so it is believed that the mechanism of electron ejection must involve vibration-rotation... [Pg.284]

Before returning to the non-BO rate expression, it is important to note that, in this spectroscopy case, the perturbation (i.e., the photon s vector potential) appears explicitly only in the p.i f matrix element because this external field is purely an electronic operator. In contrast, in the non-BO case, the perturbation involves a product of momentum operators, one acting on the electronic wavefimction and the second acting on the vibration/rotation wavefunction because the non-BO perturbation involves an explicit exchange of momentum between the electrons and the nuclei. As a result, one has matrix elements of the form (P/ t)Xf > in the non-BO case where one finds lXf > in the spectroscopy case. A primary difference is that derivatives of the vibration/rotation functions appear in the former case (in (P/(J.)x ) where only X appears in the latter. [Pg.298]

Vol. 9 Vibration-Rotational Spectroscopy and Molecular Dynamics ed. D. Papousek... [Pg.529]

Vibrational spectroscopy measures and evaluates the characteristic energy transitions between vibrational or vibrational-rotational states of molecules and crystals. The measurements provide information about nature, amount and interactions of the molecules present in the probed substances. Different methods and measurement principles have been developed to record this vibrational information, amongst which IR and Raman spectroscopy are the most prominent. The following focuses on these two techniques, the corresponding instrumentation and selected applications. [Pg.118]

IR emission spectroscopy makes use of the reciprocal effect of IR absorption spectroscopy. At temperatures above 0 °K, molecules undergo a number of vibrational, vibrational-rotational or purely rotational movements. The relaxation of these excited states leads to the emission of thermal radiation, primarily in the IR region. [Pg.124]

All by electron diffraction exceptamicrowave, vibrational-rotational spectroscopy. Standard deviations are 5 or less in the units of the last digit, except where given. [Pg.100]

And third, energy is possessed by virtue of the potential energy, and the translational, vibrational, rotational energy states of the atoms and bonds within the substance, be it atomic, molecular or ionic. The energy within each of these states is quantized, and will be discussed in greater detail in Chapter 9 within the subject of spectroscopy. These energies are normally much smaller than the energies of chemical bonds. [Pg.78]

In short, near-infrared spectra arise from the same source as mid-range (or normal ) infrared spectroscopy vibrations, stretches, and rotations of atoms about a chemical bond. In a classical model of the vibrations between two atoms, Hooke s Law was used to provide a basis for the math. This equation gave the lowest or base energies that arise from a harmonic (diatomic) oscillator, namely ... [Pg.166]

Approaches to Vibration-Rotation Spectroscopy for Polyatomic Molecules. [Pg.332]

Ogilvie, J. F., and Tipping, R. H. (1983), One-Photon Spectroscopy of Vibration-Rotational States of Diatomic Molecules, Int. Rev. Phys. Chem. 3, 3. [Pg.232]

P. Jensen, G. Osmann and I. N. Kozin, in Vibration-Rotational Spectroscopy and Molecular Dynamics (ed. D. Papousek), World Scientific, Singapore, 1997. [Pg.237]

Patel et al. °"> successfully operated parametric oscillators in the infrared region (2.5 - 25 pm) using the nonlinear characteristics of tellurium and selenium single crystals. This frequency range is important for the molecular spectroscopy of rotational-vibrational... [Pg.10]


See other pages where Spectroscopy vibration-rotational is mentioned: [Pg.271]    [Pg.271]    [Pg.200]    [Pg.1233]    [Pg.1255]    [Pg.2449]    [Pg.2474]    [Pg.2479]    [Pg.73]    [Pg.402]    [Pg.112]    [Pg.147]    [Pg.173]    [Pg.318]    [Pg.220]    [Pg.189]    [Pg.62]    [Pg.60]    [Pg.194]    [Pg.224]    [Pg.159]    [Pg.254]   
See also in sourсe #XX -- [ Pg.143 ]




SEARCH



Rotation spectroscopy

Rotation-vibration

Rotational spectroscopies

Rotational vibrations

Rotational-Vibrational Spectroscopy

Rotational-vibrational

Vibrating rotator

Vibration /vibrations spectroscopy

© 2024 chempedia.info