Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spectral crystals

An experimental teclmique that is usefiil for structure studies of biological macromolecules and other crystals with large unit cells uses neither the broad, white , spectrum characteristic of Lane methods nor a sharp, monocliromatic spectrum, but rather a spectral band with AX/X 20%. Because of its relation to the Lane method, this teclmique is called quasi-Laue. It was believed for many years diat the Lane method was not usefiil for structure studies because reflections of different orders would be superposed on the same point of a film or an image plate. It was realized recently, however, that, if there is a definite minimum wavelengdi in the spectral band, more than 80% of all reflections would contain only a single order. Quasi-Laue methods are now used with both neutrons and x-rays, particularly x-rays from synclirotron sources, which give an intense, white spectrum. [Pg.1381]

Ambrose W P and Moerner W E 1991 Fluorescence spectroscopy and spectral diffusion of single impurity molecules in a crystal Nature 349 225-7... [Pg.2506]

Reilly P D and Skinner J L 1993 Spectral diffusion of single molecule fluorescence a probe of low-frequency localized excitations in disordered crystals Phys. Rev. Lett. 71 4257-60... [Pg.2507]

Reilly P D and Skinner J L 1995 Spectral diffusion of individual pentacene molecules in p-terphenyl crystal theoretical model and analysis of experimental data J. Phys. Chem 102 1540-52... [Pg.2507]

Geva E, Reilly P D and Skinner J L 1996 Spectral dynamics of individual molecules in glasses and crystals Acc. Chem. Res. 29 579-84... [Pg.2507]

Vanden Bout D A, Kerimo J, Higgins D A and Barbara P F 1996 Spatially resolved spectral inhomogeneities in small molecular crystals studied by near-field scanning optical microscopy J. Chem. Phys. 100 11 843-9... [Pg.2510]

Germanium metal is also used in specially prepared Ge single crystals for y-ray detectors (54). Both the older hthium-drifted detectors and the newer intrinsic detectors, which do not have to be stored in hquid nitrogen, do an exceUent job of spectral analysis of y-radiation and are important analytical tools. Even more sensitive Ge detectors have been made using isotopicahy enriched Ge crystals. Most of these have been made from enriched Ge and have been used in neutrino studies (55—57). [Pg.281]

Gestodene Gestodene (54), along with norgestimate and desogestrel, are the progestin components of the third-generation oral contraceptives (see Contraceptives). It may be crystallised from hexane/acetone (81) or ethyl acetate (82), and its crystal stmcture (83) and other spectral data have been reported (84). [Pg.214]

LynestrenoL Lynestrenol (73) has been used in oral contraceptives and to treat menstrual disorders. It is converted in vivo to its active metabohte norethindrone (102,103). It can be recrystallized from methanol, and is soluble in ethanol, ether, chloroform, and acetone, and insoluble in water (102). The crystal stmcture (104) and other spectral and analytical data have been reported for lynestrenol (62). [Pg.216]

Norethindrone may be recrystakhed from ethyl acetate (111). It is soluble in acetone, chloroform, dioxane, ethanol, and pyridine slightly soluble in ether, and insoluble in water (112,113). Its crystal stmcture has been reported (114), and extensive analytical and spectral data have been compiled (115). Norethindrone acetate can be recrystakhed from methylene chloride/hexane (111). It is soluble in acetone, chloroform, dioxane, ethanol, and ether, and insoluble in water (112). Data for identification have been reported (113). The preparation of norethindrone (28) has been described (see Fig. 5). Norethindrone acetate (80) is prepared by the acylation of norethindrone. Norethindrone esters have been described ie, norethindrone, an appropriate acid, and trifiuoroacetic anhydride have been shown to provide a wide variety of norethindrone esters including the acetate (80) and enanthate (81) (116). [Pg.217]

Spectral Sensitization. The intrinsic absorption, and therefore the intrinsic photographic sensitivity, of silver bromide and silver iodobromide microcrystals falls off rapidly for wavelengths greater than 500 nm (see Fig. 2). In fact, silver chloride crystals have almost no sensitivity in the visible... [Pg.448]

As in chemical sensitization, spectral sensitization is usually done after precipitation but before coating, and usually is achieved by adsorbing certain organic dyes to the silver haUde surfaces (47,48,212—229). Once the dye molecule is adsorbed to the crystal surface, the effects of electromagnetic radiation absorbed by the dye can be transferred to the crystal. As a result of this transfer, mobile electrons are produced in the conduction band of the silver haUde grain. Once in the conduction band, the electrons are available to initiate latent-image formation. [Pg.449]

The first triaryknethane dyes were synthesized on a strictiy empirical basis in the late 1850s an example is fuchsine, which was prepared from the reaction of vinyl chloride with aniline. Thek stmctural relationship to triphenylmethane was estabHshed by Otto and Fmil Fischer (5) with the identification of pararosaniline [569-61-9] as 4,4, 4 -triaminotriphenyknethane and the stmctural elucidation of fuchsine. Several different stmctures have been assigned to the triaryknethane dyes (6—8), but none accounts precisely for the observed spectral characteristics. The triaryknethane dyes are therefore generally considered to be resonance hybrids. However, for convenience, usually only one hybrid is indicated, as shown for crystal violet [548-62-9] Cl Basic Violet 3 (1), for which = 589 nm. [Pg.267]

A number of analytical methods have been developed for the determination of chlorotoluene mixtures by gas chromatography. These are used for determinations in environments such as air near industry (62) and soil (63). Liquid crystal stationary columns are more effective in separating m- and chlorotoluene than conventional columns (64). Prepacked columns are commercially available. ZeoHtes have been examined extensively as a means to separate chlorotoluene mixtures (see Molecularsieves). For example, a Y-type 2eohte containing sodium and copper has been used to separate y -chlorotoluene from its isomers by selective absorption (65). The presence of ben2ylic impurities in chlorotoluenes is determined by standard methods for hydroly2able chlorine. Proton (66) and carbon-13 chemical shifts, characteristic in absorption bands, and principal mass spectral peaks are available along with sources of reference spectra (67). [Pg.54]


See other pages where Spectral crystals is mentioned: [Pg.86]    [Pg.86]    [Pg.1162]    [Pg.1372]    [Pg.1379]    [Pg.1490]    [Pg.1948]    [Pg.1976]    [Pg.1983]    [Pg.2485]    [Pg.2493]    [Pg.2962]    [Pg.443]    [Pg.348]    [Pg.203]    [Pg.288]    [Pg.215]    [Pg.216]    [Pg.196]    [Pg.121]    [Pg.90]    [Pg.389]    [Pg.432]    [Pg.432]    [Pg.440]    [Pg.445]    [Pg.445]    [Pg.449]    [Pg.450]    [Pg.396]    [Pg.377]    [Pg.170]    [Pg.171]    [Pg.171]    [Pg.422]    [Pg.423]    [Pg.467]    [Pg.458]   
See also in sourсe #XX -- [ Pg.117 ]




SEARCH



Crystal field theory, spectral bands

Crystals spectral jumps

Single crystal spectral studies

© 2024 chempedia.info