Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Special Parameters and Methods

Thermal expansion depends on variations in the interatomic forces with temperature. These forces are strong for covalent bonds and weak for dispersion forces. For example, for quartz, all atoms are three-dimen-sionally fixed in space The thermal expansion is consequently very small. On the other hand, in liquids, intermolecular forces are dominant The thermal expansion is large. The main-chain atoms of organic polymers are covalently bonded in one direction only in the two other directions in space only intermolecular forces are operative. Thus, polymers lie between liquids and quartz (or metals) as far as thermal expansion is concerned (Table 10-1). [Pg.378]

Because of the great difference in the thermal expansion of polymers and metals or glass, significant problems can arise when thermal stress is [Pg.378]

To a first approximation, volumes change linearly with temperature. Consequently, with the definition of the cubic expansion coefficient a, the following is obtained for the liquid state and the amorphous state  [Pg.379]

To a first approximation, the volume elements of liquid and amorphous material are equal at the glass-transition temperature. Consequently, (Ff)g = (Ka )c. Equating equations (10-7) and (10-8) and reintroducing equation (10-8), we obtain [Pg.379]

The volumes of liquid and crystal must be equal at 0 K. The term in square brackets in equation (10-9) must give the free-volume fraction [see equation (5-10)]. We obtain [Pg.379]


The final part is devoted to a survey of molecular properties of special interest to the medicinal chemist. The Theory of Atoms in Molecules by R. F.W. Bader et al., presented in Chapter 7, enables the quantitative use of chemical concepts, for example those of the functional group in organic chemistry or molecular similarity in medicinal chemistry, for prediction and understanding of chemical processes. This contribution also discusses possible applications of the theory to QSAR. Another important property that can be derived by use of QC calculations is the molecular electrostatic potential. J.S. Murray and P. Politzer describe the use of this property for description of noncovalent interactions between ligand and receptor, and the design of new compounds with specific features (Chapter 8). In Chapter 9, H.D. and M. Holtje describe the use of QC methods to parameterize force-field parameters, and applications to a pharmacophore search of enzyme inhibitors. The authors also show the use of QC methods for investigation of charge-transfer complexes. [Pg.4]

The popularity of this extraction method ebbs and flows as the years go by. SFE is typically used to extract nonpolar to moderately polar analytes from solid samples, especially in the environmental, food safety, and polymer sciences. The sample is placed in a special vessel and a supercritical gas such as CO2 is passed through the sample. The extracted analyte is then collected in solvent or on a sorbent. The advantages of this technique include better diffusivity and low viscosity of supercritical fluids, which allow more selective extractions. One recent application of SFE is the extraction of pesticide residues from honey [27]. In this research, liquid-liquid extraction with hexane/acetone was termed the conventional method. Honey was lyophilized and then mixed with acetone and acetonitrile in the SFE cell. Parameters such as temperature, pressure, and extraction time were optimized. The researchers found that SFE resulted in better precision (less than 6% RSD), less solvent consumption, less sample handling, and a faster extraction than the liquid-liquid method [27]. [Pg.37]

Electrochemistry is one of the most promising areas in the research of conducting polymers. Thus, the method of choice for preparing conducting polymers, with the exception of PA, is the anodic oxidation of suitable monomeric species such as pyrrole [3], thiophene [4], or aniline [5]. Several aspects of electrosynthesis are of relevance for electrochemists. First, there is the deposition process of the polymers at the electrode surface, which involves nucleation-and-growth steps [6]. Second, to analyze these phenomena correctly, one has to know the mechanism of electropolymerization [7, 8]. And thirdly, there is the problem of the optimization of the mechanical, electrical, and optical material properties produced by the special parameters of electropolymerization. [Pg.607]

Although the SIMCA method is very versatile, and a properly optimized model can be very effective, one must keep in mind that this method does not use, or even calculate, between-class variability. This can be problematic in special cases where there is strong natural clustering of samples that is not relevant to the problem. In such cases, the inherent interclass distance can be rather low compared to the mtraclass variation, thus rendering the classification problem very difficult. Furthermore, from a practical viewpoint, the SIMCA method requires that one must obtain sufficient calibration samples to fully represent each of the J classes. Also, the on-line deployment of a SIMCA model requires a fair amount of overhead, due to the relatively large number of parameters and somewhat complex data processing instructions required. However, there are several current software products that facilitate SIMCA deployment. [Pg.397]

Aris (A8), Bischoff (Bll), and Bischoff and Levenspiel (B14) have utilized a method that does not require a perfect delta-function input. The method involves taking concentration measurements at two points, both within the test section, rather than at only one as was previously done. The remaining sketches in Table II show the systems considered. The variances of the experimental concentration curves at the two points are calculated, and the difference between them found. This difference can be related to the parameter and thus to the dispersion coeflScient. It does not matter where the tracer is injected into the system as long as it is upstream of the two measurement points. The injection may be any type of pulse input, not necessarily a delta function, although this special case is also covered by the method. [Pg.115]

Transforming (5.65) to a system of m first - order differential equations it can be solved numerically, and fitting models of different order we can also estimate its parameters. There exists, however, a special family of methods based on the use of the convolution integral... [Pg.298]

System suitability allows the determination of system performance by analysis of a defined solution prior to running the analytical batch. System suitability should test the entire analytical system, chromatographic performance as well as the sensitivity of the mass spectrometer for the compounds of interest. Some LC-MS SOPs reference analytical methods as the source of operating details for a given analysis. This works particularly well for quantitative analysis, where analytical methods include critical details on instrument parameters and special calibrations that might be required for a particular analyte. Thus, system suitability testing provides the daily [3] checking of the system. [Pg.201]

Two main principles of temperature measurement use thermocouples and the so-called resistance thermometer. In chemical plants both methods were applied because they are easy to fit and to maintain.The accuracy of the measurement is influenced by, for example, radiation, which must be taken into account. Thermocouples can be inserted into the pressure system using special sealing techniques, or they may be mounted within a protective tube which is introduced into the pressurized volume. Thermocouple-wires are usually protected with an isulating input in closed-end capillaries with outer diameters of at least 0.5 mm. Thermocouples are technically well tested for pressures up to 6 kbar and temperatures to approx. 800°C. Above these ranges the exact measurement is negatively influenced by several parameters, and the deviations must be taken into account. The accuracy of the temperature measurement devices is normally better than 1 °C. [Pg.237]


See other pages where Special Parameters and Methods is mentioned: [Pg.379]    [Pg.379]    [Pg.381]    [Pg.383]    [Pg.385]    [Pg.378]    [Pg.379]    [Pg.381]    [Pg.383]    [Pg.385]    [Pg.418]    [Pg.1240]    [Pg.379]    [Pg.379]    [Pg.381]    [Pg.383]    [Pg.385]    [Pg.378]    [Pg.379]    [Pg.381]    [Pg.383]    [Pg.385]    [Pg.418]    [Pg.1240]    [Pg.449]    [Pg.729]    [Pg.289]    [Pg.466]    [Pg.632]    [Pg.782]    [Pg.318]    [Pg.2]    [Pg.38]    [Pg.57]    [Pg.179]    [Pg.327]    [Pg.195]    [Pg.143]    [Pg.151]    [Pg.330]    [Pg.155]    [Pg.147]    [Pg.782]    [Pg.63]    [Pg.57]    [Pg.24]    [Pg.89]    [Pg.69]    [Pg.256]    [Pg.285]    [Pg.82]    [Pg.153]   


SEARCH



Method parameters

Specialized Methods

© 2024 chempedia.info