Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Soxhlet reactions

When the reaction begins, a solution of allyl bromide in acetone is added dropwise to the flask. In this manner, allyl magnesium bromide reacts with acetone as soon as it forms and complications due to coupling are minimized. [Pg.37]

If it is necessary to prepare the Grignard reagent and subsequently utilize it in another reaction as, for example, in the preparation of a carboxylic acid, a Soxhlet reactorf is useful (Fig. 1-19). The reactor is constructed as t E. Campaigne and O. E. Yoklcy, J. Org. Chen, 28, 914 (1963). [Pg.37]


The experimental conditions for conducting the above reaction in the presence of dimethylformamide as a solvent are as follows. In a 250 ml. three-necked flask, equipped with a reflux condenser and a tantalum wire Hershberg-type stirrer, place 20 g. of o-chloronitrobenzene and 100 ml. of diinethylform-amide (dried over anhydrous calcium sulphate). Heat the solution to reflux and add 20 g. of activated copper bronze in one portion. Heat under reflux for 4 hours, add another 20 g. portion of copper powder, and continue refluxing for a second 4-hour period. Allow to cool, pour the reaction mixture into 2 litres of water, and filter with suction. Extract the solids with three 200 ml. portions of boiling ethanol alternatively, use 300 ml. of ethanol in a Soxhlet apparatus. Isolate the 2 2- dinitrodiphenyl from the alcoholic extracts as described above the 3ueld of product, m.p. 124-125°, is 11 - 5 g. [Pg.528]

The high sodium ion concentration results in facile crystallisation of the sodium salt. This process of salting out with common salt may be used for recrystallisation, but sodium benzenesulphonate (and salts of other acids of comparable molecular weight) is so very soluble in water that the solution must be almost saturated with sodium chloride and consequently the product is likely to be contaminated with it. In such a case a pure product may be obtained by crystallisation from, or Soxhlet extraction with, absolute alcohol the sul-phonate is slightly soluble but the inorganic salts are almost insoluble. Very small amounts of sulphones are formed as by-products, but since these are insoluble in water, they separate when the reaction mixture is poured into water ... [Pg.548]

If a Soxhlet extractor having a smaller capacity is employed, the cup will have to be recharged during the course of the reaction. [Pg.49]

Several pairs of reactants are possible. The aldol reaction between two molecules of the same aldehyde is generally quite successful, since the equilibrium lies far to the right. For the analogous reaction of ketones, the equilibrium lies to the left, and the reaction conditions have to be adjusted properly in order to achieve satisfactory yields (e.g. by using a Soxhlet extractor). [Pg.5]

Under N2, clean Li metal (0.17 g, 25 mmol) was placed in a round-bottom flask with a solvent mixture of MeOH (3 mL) and pcntan-t-ol (17 mL). The mixture was heated under N, until the reaction with Li was complete. Then, naphthalene-2,3-dicarbonitrilc (2 g, 11 mmol) was added to the mixture which turned green-brown the mixture was refluxed for 3h. The brown powder, obtained after cooling and removal of the solvent under reduced pressure, was dissolved in anhyd acetone (20 mL) and then hexane (70 mL) was added. The green precipitate was separated from the brown solution by filtration. This purification by precipitation was repeated twice. The green precipitate was placed in a Soxhlet extractor and extracted for 3 h with acetone (200 mL) in order to separate the product from the insoluble metal-free species and LiOH. The acetone solution was evaporated down to a volume of 20 mL. The product precipitated after the addition of hexane (70 mL). This latter purification step was performed several times yield 1.29 g (64%). [Pg.768]

After 24 h of reaction, the catalytic bed was retrieved and sieved to separate the catalyst from the diluent. The used catalyst particles were placed in a Soxhlet apparatus, washed with n-hexane for 8 hours and then dried overnight at 393 K. Their carbon content was determined by automatic titration of the CO2 formed by burning the washed sample, in a Strohlein Coulomat 702 apparatus. [Pg.100]

Solid palladium scavengers, PVPy, QTU were pmchased from commercial somces. The mesoporous silica material, S102-SH, was prepared via reaction of SBA-15 (110 A pore diameter) with 3-mercaptopropyltrimethoxysilane (16). Specifically, a toluene suspension of SBA-15 and 3-mercaptopropyltrimethoxysilane was heated at reflux for two days under Ar. Water was then added to promote the cross-linking and the mixture was heated at reflux for an additional day. The sohds were filtered and washed with copious amounts of toluene, hexanes, and methanol to remove unreacted silanes. The solids were finally Soxhlet extracted with dichloromethane at reflux temperature for 3 days, dried, and stored in a nitrogen dry box. The final solid contained 7.5 wt% sulfur (2.3 mmole S/g solid). [Pg.195]

It is of interest to examine the development of the analytical toolbox for rubber deformulation over the last two decades and the role of emerging technologies (Table 2.9). Bayer technology (1981) for the qualitative and quantitative analysis of rubbers and elastomers consisted of a multitechnique approach comprising extraction (Soxhlet, DIN 53 553), wet chemistry (colour reactions, photometry), electrochemistry (polarography, conductometry), various forms of chromatography (PC, GC, off-line PyGC, TLC), spectroscopy (UV, IR, off-line PylR), and microscopy (OM, SEM, TEM, fluorescence) [10]. Reported applications concerned the identification of plasticisers, fatty acids, stabilisers, antioxidants, vulcanisation accelerators, free/total/bound sulfur, minerals and CB. Monsanto (1983) used direct-probe MS for in situ quantitative analysis of additives and rubber and made use of 31P NMR [69]. [Pg.36]

Applications Although Soxtec combines the best qualities of reflux and Soxhlet extractions up to now fairly little evidence has been reported concerning the efficacy of this system for polymer and rubber analysis. Nevertheless, it appears that oligomers and other reaction residues, softeners, antioxidants (e.g. BHT) and several other additives used to modify polymers are easily extracted from PVC, PP, PE, PS, rubber and many other polymeric materials. Also, some leading international plastic, rubber and packaging companies have made Soxtec an integral part of their quality control routines. Some application examples where Soxtec has proved successful are [148] ... [Pg.72]

The reaction can, however, be made preparative for (91) by a continuous distillation/siphoning process in a Soxhlet apparatus equilibrium is effected in hot propanone over solid Ba(OH)2 (as base catalyst), the equilibrium mixture [containing 2% (91)] is then siphoned off. This mixture is then distilled back on to the Ba(OH)2, but only propanone (b.p. 56°) will distil out, the 2% of 2-methyl-2-hydroxypentan-4-one ( diacetone alcohol , 91, b.p. 164°) being left behind. A second siphoning will add a further 2% equilibrium s worth of (91) to the first 2%, and more or less total conversion of (90) — (91) can thus ultimately be effected. These poor aldol reactions can, however, be accomplished very much more readily under acid catalysis. The acid promotes the formation of an ambient concentration of the enol form (93) of, for example, propanone (90), and this undergoes attack by the protonated form of a second molecule of carbonyl compound, a carbocation (94) ... [Pg.225]

To obtain accurate values of the sol, thin specimens (1 mm) in one study (13) were kept in the solvent for six weeks in another study (14), thin specimens were extracted for more than 18 days in Soxhlet extractors. When the present experimental data were obtained (6), there was little interest in knowing the sol fraction accurately. However, as discussed subsequently, to compute the extent of the curing reactions and the concentration of elastically active network chains, the sol fraction must be known accurately. [Pg.422]

The products of the reaction are the following /-butyl-phenyl-ether (TBPE), p-/-butyl-phenol (p-TBP), o-/-butyl-phenol (o-TBP) and 2,4-di-/-butyl-phenol (2,4-DTBP). Compounds adsorbed on the external surface were recovered in methylene chloride (CH2C12) by a soxhlet treatment for 24 hours of the deactivated zeolite sample. The content of the compounds inside the zeolite (coke) was determined after dissolution, in 40 % HF at room temperature, of the catalyst recoved after 5 min, 45 min, 5h and 7.5 h extraction by CH2C12 then followed. The composition of soluble coke was investigated by analysis GC-MS. The procedure is reported in detail elsewhere [10]. [Pg.358]

Reaction of CpH with excess Co2(C0)s (CH2CI2, 40°C, 40-48 h) yielded CpCo(C0)2 5, (0.8-1.0 mmol Co/g., IR (KBr), 2012 and 1953 cm-1). Residual Co2(C0)s was removed via Soxhlet extraction with benzene or CH2CI2. Interestingly, reaction of 4 with C02 (C0)8 yielded 5 directly and as efficiently. Apparently, dehydration of 4 occurred under these conditions. The "overall yield" (based on cobalt incorporation) for this synthetic sequence is 15%. [Pg.170]

As a check to confirm that no extraneous non-polymer-attached catalytic species were present, the following experiment was performed. Polystyrene without attached cyclopentadiene was exposed to Co2(C0)e, extracted using a Soxhlet extractor and dried in vacuo in exactly the same manner as was used to synthesize 5. When used under the above Fischer-Tropsch reaction conditions, these treated, white polystyrene beads did not discolor, release any detectable species into solution, cause a CO/H2 pressure drop, or result in the formation of any detectable amounts of methane. These observations argue against the presence of small amounts of occluded Co2(C0)e or C04 (CO) 12 which could conceivably have been active or precursors to active species. It should be noted that the above clusters were reported to be essentially inactive under Fischer-Tropsch conditions (140°C, toluene, 1.5 atm., 3/1 H2/CO, three days) leading to mere traces of methane (11). The lack of products under our conditions also indicates that, at least in the absence of resin-bound CpCo(C0)2 or its derivatives, the polystyrene support did not degrade. [Pg.176]


See other pages where Soxhlet reactions is mentioned: [Pg.36]    [Pg.36]    [Pg.352]    [Pg.550]    [Pg.626]    [Pg.774]    [Pg.878]    [Pg.73]    [Pg.388]    [Pg.761]    [Pg.495]    [Pg.496]    [Pg.520]    [Pg.344]    [Pg.352]    [Pg.550]    [Pg.551]    [Pg.626]    [Pg.878]    [Pg.322]    [Pg.436]    [Pg.106]    [Pg.195]    [Pg.86]    [Pg.213]    [Pg.222]    [Pg.57]    [Pg.50]    [Pg.353]    [Pg.255]    [Pg.257]    [Pg.259]    [Pg.45]    [Pg.47]   


SEARCH



Soxhlet

© 2024 chempedia.info