Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sorbed systems

Without any doubt, the zeolite framework porous characteristics (micropores sizes and topology) largely govern the zeolite properties and their industrial applications. Nevertheless for some zeolite uses, as for instance, host materials for confined phases, the zeolite inner surface characteristics should be precised to understand their influence on such low dimensionality sorbed systems. In that paper, we present illustrative examples of zeolite inner surface influence on confined methane phases. Our investigation extends from relatively complex zeolite inner surface types (as for MOR structural types) to the model inner surface ones (well illustrated by the AFI zeolite type). Sorption isotherm measurements associated with neutron diffraction experiments are used in the present study. [Pg.73]

The history of the surface is an additional factor affecting the release of contaminants adsorbed on solid phases into the liquid or gaseous phase. For example, the effect of drying on contaminant desorption is influenced by the time allowed for its transport into the aqueous phase. In sorbing systems, like sediments that are permanently wet, the history of the system determines the fate of sorbed molecules (Pignatello 1989). [Pg.122]

The Alka/Sorb air pollution control system is designed to remove dioxin, furans, toxic metals, acid gases, and particulates from industrial and medical incinerator off-gas. The Alka/Sorb system consists of a dry treatment/wet scrubbing process during which incinerator off-gas is cooled, contacted with an alkaline powder, injected with a sorbent, filtered by a baghouse and then wet-scrubbed for final removal of trace acid gases. Two central parts of the Alka/Sorb system include a wet-acid scrubber and a patented sorbent called Diox-Blok, which prevents the formation of dioxins and furans in air emissions. [Pg.394]

In order to treat gases exceeding 500°F, an upstream gas cooling device is a necessary addon to the Alka/Sorb system. Also, a secondary scrubber is required to process exhaust gases containing a high load of sulfur oxides. [Pg.394]

In modelling crystalline solids, the MC technique is of particular value in three distinct fields. The first concerns studies of sorbed systems, e.g. micropo-rous solids loaded with organic molecules. MC techniques are particularly suitable for studying the variation with temperature of the distribution of sorbed molecules in such systems (Yashonath et al., 1988). Secondly, the method has been fruitfully applied to the study of atomic diffusion. In this case the moves are atomic jumps of defined frequencies. In complex solids (including, e.g., alloys and ionic conductors), use of the MC technique allows accurate sampling of all the different jump mechanisms contributing to the diffusion, as shown in several studies of Murch and coworkers (e.g. Murch, 1982). [Pg.7]

We shall forbear from giving a survey of the very extended literature on sorption phenomena and shall confine ourselves to treat in more detail a few characteristic examples. To that end four different types of well investigated sorbing systems will be selected, charcoal, silica gel, cellulose and nitrocellulose. [Pg.524]

In sorjDtion experiments, the weight of sorbed molecules scales as tire square root of tire time, K4 t) ai t if diffusion obeys Pick s second law. Such behaviour is called case I diffusion. For some polymer/penetrant systems, M(t) is proportional to t. This situation is named case II diffusion [, ]. In tliese systems, sorjDtion strongly changes tire mechanical properties of tire polymers and a sharjD front of penetrant advances in tire polymer at a constant speed (figure C2.1.18). Intennediate behaviours between case I and case II have also been found. The occurrence of one mode, or tire otlier, is related to tire time tire polymer matrix needs to accommodate tire stmctural changes induced by tire progression of tire penetrant. [Pg.2537]

Some of the most difficult heterophase systems to characterize are those based on hydrocarbon polymers such as mbber-toughened polypropylene or other blends of mbbers and polyolefins. Eecause of its selectivity, RuO staining has been found to be usehil in these cases (221,222,230). Also, OsO staining of the amorphous blend components has been reported after sorption of double-bond-containing molecules such as 1,7-octadiene (231) or styrene (232). In these cases, the solvent is preferentially sorbed into the amorphous phase, and the reaction with OsO renders contrast between the phases. [Pg.418]

The problem presented to the designer of a gas-absorption unit usually specifies the following quantities (1) gas flow rate (2) gas composition, at least with respect to the component or components to be sorbed (3) operating pressure and allowable pressure drop across the absorber (4) minimum degree of recoverv of one or more solutes and, possibly, (5) the solvent to be employed. Items 3, 4, and 5 may be subject to economic considerations and therefore are sometimes left up to the designer. For determining the number of variables that must be specified in order to fix a unique solution for the design of an absorber one can use the same phase-rule approach described in Sec. 13 for distillation systems. [Pg.1351]

In the course of mixture separation, the composition and properties of both mobile phase (MP) and stationary phase (SP) are purposefully altered by means of introduction of some active components into the MP, which are absorbed by it and then sorbed by the SP (e.g. on a silica gel layer). This procedure enables a new principle of control over chromatographic process to be implemented, which enhances the selectivity of separation. As a possible way of controlling the chromatographic system s properties in TLC, the pH of the mobile phase and sorbent surface may be changed by means of partial air replacement by ammonia (a basic gaseous component) or carbon dioxide (an acidic one). [Pg.99]

Contaminant transfer to bed sediments represents another significant transfer mechanism, especially in cases where contaminants are in the form of suspended solids or are dissolved hydrophobic substances that can become adsorbed by organic matter in bed sediments. For the purposes of this chapter, sediments and water are considered part of a single system because of their complex interassociation. Surface water-bed sediment transfer is reversible bed sediments often act as temporary repositories for contaminants and gradually rerelease contaminants to surface waters. Sorbed or settled contaminants are frequently transported with bed sediment migration or flow. Transfer of sorbed contaminants to bottomdwelling, edible biota represents a fate pathway potentially resulting in human exposure. Where this transfer mechanism appears likely, the biotic fate of contaminants should be assessed. [Pg.237]

The steady structure determined by the value of Kw (Fig. 1) for the entire class of carboxylic CP obtained by precipitation copolymerization is one of the most important factors determining the possibility of reversible bonding of proteins absorbed by carboxylic CP with a high sorption capacity [16,19]. Thus, for the MA-HHTT system (Fig. 2), a complete desorption of enzyme is carried out on crosslinked copolymers characterized by low Kw values. In crosslinked structures exhibiting looser structure (Kw P 1), owing to the mobility of chain fragments of CP especially in the process of desorption, the macromolecules of sorbed protein are irreversibly captured as a result of a marked polyfunctional interaction. [Pg.7]

As a consequence, the overall penetrant uptake cannot be used to get direct informations on the degree of plasticization, due to the multiplicity of the polymer-diluent interactions. The same amount of sorbed water may differently depress the glass transition temperature of systems having different thermal expansion coefficients, hydrogen bond capacity or characterized by a nodular structure that can be easily crazed in presence of sorbed water. The sorption modes, the models used to describe them and the mechanisms of plasticization are presented in the following discussion. [Pg.191]

The diffusional transport model for systems in which sorbed molecules can be divided in two populations, one formed by completely immobilized molecules and the other by molecules free to diffuse, has been developed by Vieth and Sladek 33) in a modified form of the Fick s second law. However, if linear isotherms are experimentally found, as in the case of the DGEBA-TETA system in Fig. 4, the diffusion of the penetrant may be described by the classical diffusion law with constant value of the effective diffusion coefficient,... [Pg.205]

Natural colloid particles in aqueous systems, such as clay particles, silica, etc. may serve as carriers of ionic species that are being sorbed on the particulates (pseudocolloids). It seems evident that the formation and transport properties of plutonium pseudocolloids can not yet be described in quantitative terms or be well predicted. This is an important area for further studies, since the pseudocolloidal transport might be the dominating plutonium migration mechanism in many environmental waters. [Pg.287]


See other pages where Sorbed systems is mentioned: [Pg.302]    [Pg.198]    [Pg.10]    [Pg.46]    [Pg.302]    [Pg.198]    [Pg.10]    [Pg.46]    [Pg.419]    [Pg.47]    [Pg.47]    [Pg.53]    [Pg.340]    [Pg.105]    [Pg.379]    [Pg.219]    [Pg.221]    [Pg.67]    [Pg.505]    [Pg.1545]    [Pg.18]    [Pg.25]    [Pg.253]    [Pg.265]    [Pg.194]    [Pg.194]    [Pg.195]    [Pg.201]    [Pg.365]    [Pg.367]    [Pg.409]    [Pg.409]    [Pg.410]    [Pg.413]    [Pg.414]    [Pg.502]    [Pg.183]    [Pg.210]    [Pg.257]   
See also in sourсe #XX -- [ Pg.8 ]




SEARCH



Sorbed

© 2024 chempedia.info