Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sonogashira coupling catalysts

Because the Sonogashira coupling process outlined in Scheme 18 is initiated by the in situ reduction of palladium(n) to palladium(o), it would be expected that palladium(o) catalysts could be utilized directly. Indeed, a catalytic amount of tetrakis(triphenylphosphine)-... [Pg.584]

Carbon-carbon bond formation reactions and the CH activation of methane are another example where NHC complexes have been used successfully in catalytic applications. Palladium-catalysed reactions include Heck-type reactions, especially the Mizoroki-Heck reaction itself [171-175], and various cross-coupling reactions [176-182]. They have also been found useful for related reactions like the Sonogashira coupling [183-185] or the Buchwald-Hartwig amination [186-189]. The reactions are similar concerning the first step of the catalytic cycle, the oxidative addition of aryl halides to palladium(O) species. This is facilitated by electron-donating substituents and therefore the development of highly active catalysts has focussed on NHC complexes. [Pg.14]

We synthesized uniform CU2O coated Cu nanoparticles from the thermal decomposition of copper acetylacetonate, followed by air oxidation. We successfully used these nanoparticles for the catalysts for Ullmann type amination coupling reactions of aryl chlorides. We synthesized core/shell-like Ni/Pd bimetallic nanoparticles from the consecutive thermal decomposition of metal-surfactant complexes. The nanoparticle catalyst was atom-economically applied for various Sonogashira coupling reactions. [Pg.43]

A copper-free Sonogashira coupling reaction in ionic liquids and its application to a microflow system for efficient catalyst recycling, Org. Lett. 4, 10 (2002) 1691-1694. [Pg.124]

Table 4.7 Sonogashira coupling of aryl halides with terminal acetylenes in the presence of PdCbiPPhj) catalyst [120]. Table 4.7 Sonogashira coupling of aryl halides with terminal acetylenes in the presence of PdCbiPPhj) catalyst [120].
Concerning other metals, Sonogashira coupling products have also been observed in the reaction of Ag(l)-carbenes [133] and Au(I)-supported carbenes [134] in low to moderate yields, but only under harsh conditions (more than 100°C). In this regard, NHC based catalysts for Sonogashira reactions have been supported on different materials that include clays [135], polymers [136] and peptides [137]. [Pg.180]

The coupling of terminal alkynes with organic halides, known as the Castro-Stephens-Sonogashira reaction, has wide applications in synthesis. The most widely used method is the Sonogashira coupling, using a combination of palladium and copper as the catalyst.13 Recently,... [Pg.100]

Besides palladium catalysts, nickel was also found to be an effective catalyst for the Sonogashira reaction in aqueous media. Recently, Beletskaya et al. reported a Ni(PPh3)2Cl2/CuI-catalyzed Sonogashira coupling reaction of terminal acetylenes with aryl iodides in aqueous dioxane in high yields (Eq. 4.19).39... [Pg.109]

A silver(i) complex having the heterosubstituted 3-methyl-l-(2-pyridylmethyl)imidazol-2-ylidene ligand, [Ag(carbene)2] [I/Agl2] 37, was reported, which was further reacted to give a series of palladium(n) carbene complexes that were demonstrated to be active catalysts toward Heck, Suzuki, and Sonogashira coupling reactions.87... [Pg.212]

Another palladium-catalyzed coupling reaction that has been successfully performed on soluble polymers is the Sonogashira coupling. Xia and Wang have presented an approach in which the PEG 4000 utilized simultaneously serves as polymeric support, solvent, and phase-transfer catalyst (PTC) in both the coupling and... [Pg.338]

Some early examples involving microwave-assisted solvent-free Sonogashira couplings using palladium powder doped on alumina/potassium fluoride as catalyst were described by Kabalka and coworkers (Scheme 4.4) [150], In addition, this novel catalytic system has been used in microwave-assisted solvent-free Sonogashira coupling-cyclization of ortho-iodophenol with terminal alkynes, and similarly of ortho-ethynylphenols with aromatic iodides, to generate 2-substituted benzo[b]furans... [Pg.382]

A rapid MW-assisted palladium-catalyzed coupling of heteroaryl and aryl boronic acids with iodo- and bromo-substituted benzoic acids, anchored on TentaGel has been achieved [174]. An environmentally friendly Suzuki cross-coupling reaction has been developed that uses polyethylene glycol (PEG) as the reaction medium and palladium chloride as a catalyst [175]. A solventless Suzuki coupling has also been reported on palladium-doped alumina in the presence of potassium fluoride as a base [176], This approach has been extended to Sonogashira coupling reaction wherein terminal alkynes couple readily with aryl or alkenyl iodides on palladium-doped alumina in the presence of triphenylphosphine and cuprous iodide (Scheme 6.52) [177]. [Pg.210]

A detailed study on the catalytic use of Pd/TPPTS catalyst in aqueous Sonogashira couplings revealed, that it is possible to obtain unsymmetrical diynes with moderate to good yields in aqueous methanol, with Cul as promoter and Et2NH as base (Scheme 6.18) [44]. The same authors describe a short synthesis of Eutypine, which is an antibacterial substance isolated from the culture medium of Eutypa lata. The fungus E. lata is held responsible for a vinyard disease known as eutyposis, so obviously this synthesis is of great interest. [Pg.175]

Other successful examples of catalysts containing NHC ligands are found in palladium- and nickel-catalyzed carbon-carbon bond formations. The catalyst development with these metals has focused in particular on Heck-type reactions, especially the Mizoroki-Heck reaction itself [Eq. (42)] and various cross coupling reactions [Eq. (43)], e.g., the Suzuki-Miyaura reaction ([M] = and the Kumada-Corriu reaction ([M] = MgBr). " Related reactions like the Sonogashira coupling [Eq. (44)]326-329 Buchwald-... [Pg.42]

Heuze et al. (34) synthesized three generations of bis(tert-butylphosphine)- and bis(cyclohexylphosphine)-functionalized Pd(II) DAB dendritic complexes that serve as copper-free recoverable catalysts for the Sonogashira coupling between aryl halides and alkynes (Scheme 9). [Pg.100]

Scope of this synthetic strategy is not limited to benzofiirans. The reaction of 2-iodo-3-hydroxypyridine and 1,1 -diethoxy-2-propync under Sonogashira coupling conditions (palladium-copper catalyst system) leads to the formation of the substituted furo[3,2-6]pyridine shown in 3.56.72... [Pg.50]

The coupling of 2-iodobenzoic acid and phenylacetylene under Sonogashira coupling conditions was found to give a mixture of an isocoumarin derivative and a phthalide (4.40.), The proper choice of the catalyst system led to the preferential formation of the latter compound.53 The process might also be diverted towards the formation of the isocoumarin derivative by isolation of the intermediate o-cthynyl-benzoic acid and its subjection to carefully selected cyclization conditions54... [Pg.82]

The Sonogashira coupling of haloazoles and terminal acetylenes in the presence of a palladium(0)-copper(l) catalyst system usually proceeds readily. Its application has, in the beginning, been limited to iodoazoles, while recent examples frequently utilise bromo-heterocycles too. [Pg.113]

The Sonogashira coupling of haloazines can be effected by a series of catalyst systems. Recently a lot effort was devoted to the development of a recyclable catalyst system. Kotschy and co-workers recently reported the use of palladium on charcoal as a convenient palladium source for this process, which allows for the separation and reuse of the catalyst at the end of the reaction (7.35.), The authors also demonstrated that, in spite of the absence of any substantial catalyst leaching, the catalytic activity of the reused Pd/C decreases on each run,49 a surprising phenomenon which was attributed to the dissolution and reprecipitation of the active catalyst in the course of the process. Pd(OH)2 on charcoal exhibited a similar activity in the Sonogashira coupling of bromopyridines.50... [Pg.152]

Another alternate to the Sonogashira coupling was reported by Blum and Molander, where sodium tetraalkynylaluminatcs were coupled with bromoazines and bromoazoles in the presence of a palladium-triphenylphosphine catalyst system. 5-Bromopyrimidine coupled with the TMS-acetylide, for example, to give the cthynylpyrimidinc in excellent yield (7.41.),59 The transmetalating reagents were prepared in situ by the reaction of the appropriate acetylene derivative with sodium aluminiumhydride. [Pg.154]

An analogous nickel catalyzed coupling was also reported recently, where 3-, and 4-cyanopyridine were coupled with different ethynylzinc derivatives in the presence of a nickel-phosphine catalyst system (7.43.),61 Although this reaction is not a Sonogashira coupling, it constitutes an efficient alternative approach to ethynylpyridines. It is also interesting to... [Pg.154]


See other pages where Sonogashira coupling catalysts is mentioned: [Pg.584]    [Pg.48]    [Pg.322]    [Pg.233]    [Pg.111]    [Pg.87]    [Pg.119]    [Pg.186]    [Pg.59]    [Pg.130]    [Pg.132]    [Pg.101]    [Pg.534]    [Pg.122]    [Pg.700]    [Pg.1008]    [Pg.174]    [Pg.184]    [Pg.43]    [Pg.54]    [Pg.119]    [Pg.286]    [Pg.314]    [Pg.670]    [Pg.20]    [Pg.47]    [Pg.117]    [Pg.154]    [Pg.187]    [Pg.72]   


SEARCH



Copper-based catalysts Sonogashira couplings

Solid support catalysts, Sonogashira coupling

Sonogashira coupling reaction ligand-free catalysts

Sonogashira coupling reaction metal catalysts

© 2024 chempedia.info