Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvents structure, reactivity

We will discuss shortly the most important structure-reactivity features of the E2, El, and Elcb mechanisms. The variable transition state theoiy allows discussion of reactions proceeding through transition states of intermediate character in terms of the limiting mechanistic types. The most important structural features to be considered in such a discussion are (1) the nature of the leaving group, (2) the nature of the base, (3) electronic and steric effects of substituents in the reactant molecule, and (4) solvent effects. [Pg.379]

Another method for studying solvent effects is the extrathermodynamic approach that we described in Chapter 7 for the study of structure-reactivity relationships. For example, we might seek a correlation between og(,kA/l ) for a reaction A carried out in a series of solvents and log(/ R/A R) for a reference or model reaction carried out in the same series of solvents. A linear plot of og(k/iJk ) against log(/ R/ linear free energy relationship (LFER). Such plots have in fact been made. As with structure-reactivity relationships, these solvent-reactivity relationships can be useful to us, but they have limitations. [Pg.388]

We have seen that physical properties fail to correlate rate data in any general way, although some limited relationships can be found. Many workers have, therefore, sought alternative measures of solvent behavior as means for correlating and understanding reactivity data. These alternative quantities are the empirical measures described in this section. The adjective empirical in this usage is synonymous with model dependent this is. therefore, an extrathermodynamic approach, entirely analogous to the LFER methods of Chapter 7 with which structure-reactivity relationships can be studied. [Pg.425]

After an introductory chapter, phenomenological kinetics is treated in Chapters 2, 3, and 4. The theory of chemical kinetics, in the form most applicable to solution studies, is described in Chapter 5 and is used in subsequent chapters. The treatments of mechanistic interpretations of the transition state theory, structure-reactivity relationships, and solvent effects are more extensive than is usual in an introductory textbook. The book could serve as the basis of a one-semester course, and I hope that it also may be found useful for self-instruction. [Pg.487]

The Hammett equation is not the only LFER." ° Some, like the Hammett equation, correlate structural changes in reactants, but the Grunwald-Winstein relationship (see p. 452) correlates changes in solvent and the Brpnsted relation (see p. 337) relates acidity to catalysis. The Taft equation is a structure-reactivity equation that correlates only field effects. ... [Pg.371]

To sum up, the rate retardation attributed to steric effects of bulky alkyl groups can arise from substituent-electrophile, substituent-substituent and substituent-solvent interactions in the first ionization step of the reaction and also from substituent-nucleophile interactions in the product-forming step. It is therefore not surprising that the usual structure-reactivity correlations or even simpler log/log relationships cannot satisfactorily describe the kinetic effects of alkyl groups in the electrophilic bromination of alkenes. [Pg.251]

Model computational studies aimed at understanding structure-reactivity relationships and substituent effects on carbocation stability for aza-PAHs derivatives were performed by density functional theory (DFT). Comparisons were made with the biological activity data when available. Protonation of the epoxides and diol epoxides, and subsequent epoxide ring opening reactions were analyzed for several families of compounds. Bay-region carbocations were formed via the O-protonated epoxides in barrierless processes. Relative carbocation stabilities were determined in the gas phase and in water as solvent (by the PCM method). [Pg.342]

Our approach was to study structure reactivity relationships in a number of model reactions and, then, to proceed to the usually more difficult polymerizations using a variety of comonomer pairs. Secondly, we hoped to optimize the various, experimental solid-liquid PTC parameters such as nature and amount of catalyst, solvent, nature of the solid phase base, and the presence of trace water in the liquid organic phase. Finally, we wished to elucidate the mechanism of the PTC process and to probe the generality of solid-liquid PTC catalysis as a useful synthetic method for polycondensation. [Pg.129]

What aspects of chemical structure control the rate and mechanism by which a chemical reaction takes place Chemists have long sought good answers to this question, in terms of structure-reactivity correlations, both qualitative and quantitative. When chemists have analyzed the factors that affect reactivity, however, almost invariably the solvent has been, at first, regarded as a minor perturbation in the analysis. Unless there is some overwhelming effect, for example, the millionfold rate increase seen for some reactions such as ... [Pg.194]

Extreme cases were reactions of the least stabilized, most reactive carbene (Y = CF3, X = Br) with the more reactive alkene (CH3)2C=C(CH3)2, and the most stabilized, least reactive carbene (Y = CH3O, X = F) with the less reactive alkene (1-hexene). The rate constants, as measured by LFP, were 1.7 x 10 and 5.0 X lO M s, respectively, spanning an interval of 34,000. In agreement with Houk s ideas,the reactions were entropy dominated (A5 —22 to —29e.u.). The AG barriers were 5.0 kcal/mol for the faster reaction and 11 kcal/ mol for the slower reaction, mainly because of entropic contributions the AH components were only —1.6 and +2.5 kcal/mol, respectively. Despite the dominance of entropy in these reactive carbene addition reactions, a kind of de facto enthalpic control operates. The entropies of activation are all very similar, so that in any comparison of the reactivities of alkene pairs (i.e., ferei)> the rate constant ratios reflect differences in AA//t, which ultimately appear in AAG. Thus, car-benic philicity, which is the pattern created by carbenic reactivity, behaves in accord with our qualitative ideas about structure-reactivity relations, as modulated by substiment effects in both the carbene and alkene partners of the addition reactions. " Finally, volumes of activation were measured for the additions of CgHsCCl to (CH3)2C=C(CH3)2 and frani-pentene in both methylcyclohexane and acetonitrile. The measured absolute rate constants increased with increasing pressure Ayf ranged from —10 to —18 cm /mol and were independent of solvent. These results were consistent with an early, and not very polar transition state for the addition reaction. [Pg.289]

Some redox couples of organometallic complexes are used as potential references. In particular, the ferrocenium ion/ferrocene (Fc+/Fc) and bis(biphenyl)chromium(I)/ (0) (BCr+/BCr) couples have been recommended by IUPAC as the potential reference in each individual solvent (Section 6.1.3) [11]. Furthermore, these couples are often used as solvent-independent potential references for comparing the potentials in different solvents [21]. The oxidized and reduced forms of each couple have similar structures and large sizes. Moreover, the positive charge in the oxidized form is surrounded by bulky ligands. Thus, the potentials of these redox couples are expected to be fairly free of the effects of solvents and reactive impurities. However, these couples do have some problems. One problem is that in aqueous solutions Fc+ in water behaves somewhat differently to in other solvents [29] the solubility of BCr+BPhF is insufficient in aqueous solutions, although it increases somewhat at higher temperatures (>45°C) [22]. The other problem is that the potentials of these couples are influenced to some extent by solvent permittivity this was discussed in 8 of Chapter 2. The influence of solvent permittivity can be removed by... [Pg.237]

Cyclic sulfites (68) also are opened by nucleophiles, although they are less reactive than cyclic sulfates and require higher reaction temperatures for the opening reaction. Cyclic sulfite 77, in which the hydroxamic ester is too labile to withstand ruthenium tetroxide oxidation of the sulfite, is opened to 78 in 76% yield by reaction with lithium azide in hot DMF [82], Cyclic sulfite 79 is opened with nucleophiles such as azide ion [83] or bromide ion [84], by using elevated temperatures in polar aprotic solvents. Structures such as 80 generally are not isolated but as in the case of 80 are carried on (when X = N3) to amino alcohols [83] or (when X = Br) to maleates [84] by reduction. Yields are good and for compounds unaffected by the harsher conditions needed to achieve the displacement reaction, use of the cyclic sulfite eliminates the added step of oxidation to the sulfate. [Pg.389]

Rate constants of ketonization of acetophenone enol along paths (a) and (b) have been be estimated using the Bronsted Equation (16).20 Those predicted for path (a) are orders of magnitude below the observed rate constant k c = 0.18 s 1, while those for path (b) were found to be in reasonable agreement with experiment. The concerted mechanism (c) does not satisfactorily account for structure-reactivity relationships observed in aqueous solution. It may, however, well be the dominant mechanism in aprotic solvents containing small amounts of water. [Pg.349]

The reactive species generated by the photoexcitation of organic molecules in the electron-donor-acceptor systems are well established in last three decades as shown in Scheme 1. The reactivity of an exciplex and radical ion species is discussed in the following sections. The structure-reactivity relationship for the exciplexes, which possess infinite lifetimes and often emit their own fluorescence, has been shown in some selected regioselective and stereoselective photocycloadditions. However, the exciplex emission is often absent or too weak to be identified although the exciplexes are postulated in many photocycloadditions [11,12], The different reactivities among the contact radical ion pairs (polar exciplexes), solvent-separated radical ion pairs, and free-radical ions as ionic species... [Pg.128]


See other pages where Solvents structure, reactivity is mentioned: [Pg.438]    [Pg.382]    [Pg.444]    [Pg.68]    [Pg.20]    [Pg.79]    [Pg.59]    [Pg.285]    [Pg.207]    [Pg.131]    [Pg.547]    [Pg.22]    [Pg.55]    [Pg.85]    [Pg.274]    [Pg.694]    [Pg.106]    [Pg.23]    [Pg.154]    [Pg.275]    [Pg.136]    [Pg.214]    [Pg.215]    [Pg.3]    [Pg.10]    [Pg.130]    [Pg.223]    [Pg.307]    [Pg.732]    [Pg.326]    [Pg.505]    [Pg.200]    [Pg.82]    [Pg.622]    [Pg.92]   
See also in sourсe #XX -- [ Pg.30 ]

See also in sourсe #XX -- [ Pg.368 , Pg.369 , Pg.370 , Pg.371 ]




SEARCH



Reactive solvents

Solvent structure

Solvents reactivity

© 2024 chempedia.info