Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvents steric stabilization

Good solvent Poor solvent Steric stabilization Figure 12.6 Steric stabilization using polymers. For proper stabilization, the steric barrier needs to extent at least 10 nm from the particle surface and therefore polymers or oligomers are used (low molecular surfactants are too small). It works best with thick and dense layers, good solvents, strong adsorption and complete particle coverage... [Pg.274]

Anotlier model system consists of polymetliylmetliacrylate (PMMA) latex, stabilized in organic solvents by a comb polymer, consisting of a PMMA backbone witli poly-12-hydroxystearic acid (PHSA) chains attached to it [10]. The PHSA chains fonn a steric stabilization layer at tire surface (see section C2.6.4). Such particles can approach tire hard-sphere model very well [111. [Pg.2670]

For so-called steric stabilization to be effective, tire polymer needs to be attached to tire particles at a sufficiently high surface coverage and a good solvent for tire polymer needs to be used. Under such conditions, a fairly dense polymer bmsh witli tliickness L will be present around the particles. Wlren two particles approach, such tliat r < d + 2L, tire polymer layers may be compressed from tlieir equilibrium configuration, tluis causing a repulsive interaction. [Pg.2679]

The behaviour of tliese systems is similar to tliat of suspensions in which short-range attractions are induced by changing solvent quality for sterically stabilized particles (e.g. [103]). Anotlier case in which narrow attractions arise is tliat of solutions of globular proteins. These crystallize only in a narrow range of concentrations [104]. [Pg.2688]

Chemical Grafting. Polymer chains which are soluble in the suspending Hquid may be grafted to the particle surface to provide steric stabilization. The most common technique is the reaction of an organic silyl chloride or an organic titanate with surface hydroxyl groups in a nonaqueous solvent. For typical interparticle potentials and a particle diameter of 10 p.m, steric stabilization can be provided by a soluble polymer layer having a thickness of - 10 nm. This can be provided by a polymer tail with a molar mass of 10 kg/mol (25) (see Dispersants). [Pg.547]

Suppose we have a physical system with small rigid particles immersed in an atomic solvent. We assume that the densities of the solvent and the colloid material are roughly equal. Then the particles will not settle to the bottom of their container due to gravity. As theorists, we have to model the interactions present in the system. The obvious interaction is the excluded-volume effect caused by the finite volume of the particles. Experimental realizations are suspensions of sterically stabilized PMMA particles, (Fig. 4). Formally, the interaction potential can be written as... [Pg.750]

Monosized polystyrene particles in the size range of 2-10 /am have been obtained by dispersion polymerization of styrene in polar solvents such as ethyl alcohol or mixtures of alcohol with water in the presence of a suitable steric stabilizer (59-62). Dispersion polymerization may be looked upon as a special type of precipitation polymerization and was originally meant to be an alternative to emulsion polymerization. The components of a dispersion polymerization include monomers, initiator, steric stabilizer, and the dispersion medium... [Pg.15]

Monomer-soluble initiators are used in this polymerization technique. The monomer phase containing an initiator is dissolved in an inert solvent or solvent mixture including a steric stabilizer. The polymers or oligomer... [Pg.201]

Two major types of stabilization mechanisms are described for submicron particles (1) charge stabilization, where surface charge forms a repulsive screen that prevents the particles from flocculation, and (2) steric stabilization, where a surface repulsive screen is formed by solvent-compatible flexible polymeric chains attached to the particle s surface. [Pg.442]

It has been demonstrated that the length of the hydrocarbon solvent molecule can have a significant impact of the stability of sterically stabilized nanoparticles [24, 30]. The solvation of a sterically stabilized nanoparticle depends on the interaction parameter, %, between the solvent and the ligand [25, 30-33], such that... [Pg.45]

Kitchens, C.L., McLeod, M.C. and Roberts, C.B. (2003) Solvent effects on the growth and steric stabilization of copper metallic nanoparticles in AOT reverse micelle systems. Journal of Physical Chemistry B, 107 (41), 11331-11338. [Pg.57]

Saunders, A.E., Shah, P.S., Park, E.J., Lim, K.T., Johnston, K.P. and Korgel, B.A. (2004) Solvent density-dependent steric stabilization of perfluoropolyether-coated nanocrystals in supercritical carbon dioxide. Journal of Physical Chemistry B, 108 (41), 15969-15975. [Pg.58]

Flocculation studies (6) indicated that the mechanism of steric stabilization operates for the PMMA dispersions. The stability of PMMA dispersions was examined further by redispersion of the particles in cyclohexane at 333 K. Above 307 K, cyclohexane is a good solvent for PS and PDMS, and if the PS-PDMS block copolymer was not firmly anchored, desorption of stabilizer by dissolution should occur at 333 K followed by flocculation of the PMMA dispersion. However, little change in dispersion stability was observed over a period of 60 h. Consequently, we may conclude that the PS blocks are firmly anchored within the hard PMMA matrix. However, the indication from neutron scattering of aggregates of PS(D) blocks in PMMA particles may be explained by the observation that two different polymers are often not very compatible on mixing (10) so that the PS(D) blocks are tending to... [Pg.275]

In the absence of polymer the sediment volume of silica depends on the non-solvent fraction of the medium as shown in Figure 6. The sediment volume assessment of steric stabilization behavior of the copolymers is illustrated in Figures 7a to 7c. At low styrene contents, both the random and block copolymers show a steady increase in sediment volume as the non-solvent content is raised up to the phase separation value. With polystyrene and random copolymers of high styrene content, the sediment volume stays largely constant with alteration in the non-solvent fraction until the theta-point is approached and then continues to become larger as the limit of solubility is reached. In Figure 7b only the data points of RC 86 are shown, RC 94 giving almost identical values. [Pg.308]

Besides temperature and addition of non-solvent, pressure can also be expected to affect the solvency of the dispersion medium for the solvated steric stabilizer. A previous analysis (3) of the effect of an applied pressure indicated that the UCFT should increase as the applied pressure increases, while the LCFT should be relatively insensitive to applied pressure. The purpose of this communication is to examine the UCFT of a nonaqueous dispersion as a function of applied pressure. For dispersions of polymer particles stabilized by polyisobutylene (PIB) and dispersed in 2-methylbutane, it was observed that the UCFT moves to higher temperatures with increasing applied pressure. These results can qualitatively be rationalized by considering the effect of pressure on the free volume dissimilarity contribution to the free energy of close approach of the interacting particles. [Pg.318]

Steric Stabilization. Steric stabilization was a term first introduced by Heller to explain how adsorbed polyethylene oxide polymers increased the salt concentration required for flocculation of negatively charged aqueous suspensions.(6) Heller s systems were stabilized by both mechanisms, as are most commercial dispersions today, aqueous and non-aqueous. Much of the more recent literature on steric stabilizers has been preoccupied with solubility requirements, for the solubility of polymers is a delicate matter and very sensitive to temperature and solvent... [Pg.332]

The term steric stabilization may also be used to describe protective transition-metal colloids with traditional ligands or solvents. This stabilization occurs by (i) the strong coordination of various metal nanoparticles with ligands such as phosphines [16-18], thiols [19-22], amines [21, 23-26], oxazolines [27] or carbon monoxide [18] or (ii) weak interactions with solvents such as tetrahydrofur-an (THF) or various alcohols [18, 28-31]. [Pg.220]

To keep the precipitating polymers in the dispersed state throughout the polymerization, requires steric stabilizers. This problem is classically tackled via copolymerization with fluoroalkylmethacrylates or the addition of fluorinated surfactants, both being only weak steric stabilizers. DeSimone el al. also applied a fluorinated block copolymer,9 proving the superb stabilization efficiency of such systems via a rather small particle size. One goal of the present chapter is therefore an investigation of our fluorinated block copolymers as steric stabilizers in low-cohesion-energy solvents. [Pg.158]

These block copolymers can act as effective steric stabilizers for the dispersion polymerization in solvents with ultralow cohesion energy density. This was shown with some polymerization experiments in Freon 113 as a model solvent. The dispersion particles are effectively stabilized by our amphi-philes. However, these experiments can only model the technically relevant case of polymerization or precipitation processes in supercritical C02 and further experiments related to stabilization behavior in this sytem are certainly required. [Pg.164]

The dispersion polymerization system is composed of monomer, solvent, initiator, and stabilizer. The combination of monomer, solvent, and stabilizer is essential for particle preparation. That is to say, the stabilizer is chosen to meet the demand of the monomer and solvent. In any system, the stabilizer has affinity or cohesive strength for both the medium and the polymer particles. In a dispersion polymerization, the medium and polymer particles both are organic compounds. Therefore, it is not rational to rely on dispersion stabilization, which comes from the electrostatic repulsion force between particles. The stabilizer for dispersion polymerization that makes interfacial energy low must have affinity for particles due to the same quality and solvation at the surface of particles. It is desired that the stabilizer be a polymer that indicates a steric stabilization effect on the surface (5). [Pg.612]


See other pages where Solvents steric stabilization is mentioned: [Pg.136]    [Pg.136]    [Pg.2679]    [Pg.2685]    [Pg.27]    [Pg.548]    [Pg.16]    [Pg.201]    [Pg.210]    [Pg.603]    [Pg.296]    [Pg.603]    [Pg.342]    [Pg.38]    [Pg.259]    [Pg.119]    [Pg.315]    [Pg.317]    [Pg.319]    [Pg.65]    [Pg.54]    [Pg.836]    [Pg.90]    [Pg.307]   
See also in sourсe #XX -- [ Pg.357 , Pg.358 ]




SEARCH



Solvents stabilization

Stability steric

Stabilizing solvents

Steric stability, solvent role

Steric stabilization

Steric stabilizer

© 2024 chempedia.info