Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solute-solvent interactions effects

Change in the dielectric constant can have a notable effect on the rate of a reaction. For ion-ion reactions it can be estimated that reducing the dielectric constant from 78 to 36 should decrease the rate of reaction for singly charged ions by a factor of about 10. Specific solvent-solute interaction effects are important as well. [Pg.294]

Practical Solubility Concepts. Solution theory can provide a convenient, effective framework for solvent selection and blend formulation (3). When a solute dissolves in a solvent, a change in free energy occurs as a result of solvent—solute interactions. The change in free energy of mixing must be negative for dissolution to occur. In equation 1,... [Pg.264]

The extent or nature of solvent-solute interactions may be different in the deuterated and nondeuterated solvents this may change the energies of the transition state, and hence the activation energy of the reaction. These are secondary isotope effects. Two physical models for this third factor have been constructed. ... [Pg.300]

If a substance is to be dissolved, its ions or molecules must first move apart and then force their way between the solvent molecules which interact with the solute particles. If an ionic crystal is dissolved, electrostatic interaction forces must be overcome between the ions. The higher the dielectric constant of the solvent, the more effective this process is. The solvent-solute interaction is termed ion solvation (ion hydration in aqueous solutions). The importance of this phenomenon follows from comparison of the energy changes accompanying solvation of ions and uncharged molecules for monovalent ions, the enthalpy of hydration is about 400 kJ mol-1, and equals about 12 kJ mol-1 for simple non-polar species such as argon or methane. [Pg.26]

The direction and extent of the effect of solvent polarity on reaction rates of nucleophilic substitution reactions are summarized by the Hughes-Ingold rules, shown in Table 1.9 [26], These rules do not account for the entropic effects or any specific solvent-solute interactions such as H-bonding, which may lead to extra stabilization of reactants or transition states [27],... [Pg.26]

Many different approaches have been reported in the last decade toward a better understanding of the medium factors that influence reaction rates. Fundamental studies have been devoted to probe the reaction at a microscopic level in order to obtain information on the nature of several specific solvent-solute interactions on S Ar and to attempt a description of these effects quantitatively. Recent works have shown the wide applicability of a single parameter scale such as the Ex(30) Dimroth and Reichardt37, as well as other multi-parameter equations. [Pg.1220]

For the optimal application of GPC to the separation of discrete small molecules, three factors should be considered. Solvent effects are minimal, but may contribute selectivity when solvent-solute interactions occur. The resolving power in SMGPC increases as the square root of the column efficiency (plate count). New, efficient GPC columns exist which make the separation of small molecules affordable and practical, as indicated by applications to polymer, pesticide, pharmaceutical, and food samples. Finally, the slope and range of the calibration curve are indicative of the distribution of pores available within a column. Transformation of the calibration curve data for individual columns yields pore size distributions from which useful predictions can be made regarding the characteristics of column sets. [Pg.185]

Observed bands depend (except for vapour phase spectra) on medium as well as on substrate. This is true even in inert gas matrix studies, and is much more obviously so in solution. This phenomenon may be turned to advantage in the study of solvent-solute interactions, and in any case may often be minimised by careful choice of solvent. Observed intensities confirm simple ideas of orbital following, and intensity distributions may be related to structure in well-understood ways, at least when exact parameters are available, or when only geometric effects are relevant. [Pg.37]

It is common, however, for liquid-phase systems to include many specific absorbing species. Such species could include isotopic variations, conformational isomers, and solvent-solute interactions resulting in varied-lifetime transient associations between molecules. Distributions resulting from these effects give the Voigt profile utility in studying liquid spectra. We must understand, however, that the functions introduced here are only rough approximations when applied to the spectra of liquids because of the complexities just mentioned and others beyond the scope of this work. [Pg.44]

In their studies of the effect of solvent upon the N—H stretching frequency in pyrrole, Fuson and Josien [1] have shown the distinction between the solvent-solute interaction which is a function of dielectric constant alone [2, 3] and that which is more specific, involving N—H hydrogen bonding. The most pronounced frequency shifts are those caused by pyridine [4] (K—M N bonding) and by acetone (N—H 0 bonding). The choice of pyrrole for these studies was presumably partly governed by convenience since the N—H band in pyrrole is considerably more intense than in the more basic secondary amines. We have attempted an extension of this work in two directions ... [Pg.177]

A more exact analysis of the effect of solvent variation and hence of solvent—solute interactions could be obtained through the thermodynamic transfer functions.21 The application of these to the equilibrium situation can be seen by referring to Figure 6. SAG, is defined as the difference in standard free energy of reaction between the two solvents A and B (equation 32), which by reference to Figure 6 leads to equation (33) ... [Pg.516]

It follows from these similarities in solvent properties that equilibrium or rate constants of reactions in which the solvent molecules do not directly participate generally show comparatively small changes when the deuterium content of the medium is altered. This is true even for rates of proton transfer between neutral substrates and acetate ions, which as a rule are reduced by 20-40% on going from H20 to D20 (Bell, 1965). Because of the anionic nature of one of the reactants and of the transition state these reactions are of a type in which solvent-solute interactions through hydrogen bonds are probably particularly large, and yet the solvent isotope effect is fairly small. Reactions in... [Pg.261]

The key differences between the PCM and the Onsager s model are that the PCM makes use of molecular-shaped cavities (instead of spherical cavities) and that in the PCM the solvent-solute interaction is not simply reduced to the dipole term. In addition, the PCM is a quantum mechanical approach, i.e. the solute is described by means of its electronic wavefunction. Similarly to classical approaches, the basis of the PCM approach to the local field relies on the assumption that the effective field experienced by the molecule in the cavity can be seen as the sum of a reaction field term and a cavity field term. The reaction field is connected to the response (polarization) of the dielectric to the solute charge distribution, whereas the cavity field depends on the polarization of the dielectric induced by the applied field once the cavity has been created. In the PCM, cavity field effects are accounted for by introducing the concept of effective molecular response properties, which directly describe the response of the molecular solutes to the Maxwell field in the liquid, both static E and dynamic E, [8,47,48] (see also the contribution by Cammi and Mennucci). [Pg.172]

Intermolecular solvent-solute interactions influence the charge distribution on a carbohydrate molecule. Subtle electronic changes that occur as a result of these interactions are responsible for the solvent dependence of carbon -proton coupling constants. The general aspects of solvent effects on NMR parameters have been reviewed,78-79 and consequently, only a very brief outline of the theoretical model within FPT INDO SCF MO formalism is considered here. [Pg.29]

In general, any satisfactory theoretical calculation of a nuclear coupling constant requires reliable calculation of the molecular wavefunction. As a consequence, a realistic approximation to the actual charge distribution in the carbohydrate molecule must presumably enter any theoretical model that attempts to provide a quantitative interpretation of solvent effects. The simplest treatments, and those that have been proposed most frequently to account for the solvent effect in the absence of specific effects, are those in which the solvent is treated as a continuum surrounding the solute molecule. Several different models where the solvent dependence of coupling interactions is related to the polarity of the medium have been proposed.78-79 The solvation theory80,81 has been successfully used within the FPT formalism to interpret the effect of solvent on Jc H and 3/CH. On the basis of this model, the Hamiltonian of a particular molecule includes the solvent-solute interaction term //so,v ... [Pg.29]

Though there are some exceptions, in most cases the rule like dissolves like applies. That is, polar solvents (like water) can dissolve polar solutes (like salts), and nonpolar solvents (like gasoline) can dissolve nonpolar solutes (like grease). These solvent-solute interactions have other effects on the properties of solutions that are the topic of the upcoming section on colligative properties. [Pg.202]


See other pages where Solute-solvent interactions effects is mentioned: [Pg.112]    [Pg.207]    [Pg.217]    [Pg.228]    [Pg.202]    [Pg.32]    [Pg.121]    [Pg.148]    [Pg.129]    [Pg.408]    [Pg.20]    [Pg.171]    [Pg.80]    [Pg.192]    [Pg.609]    [Pg.234]    [Pg.206]    [Pg.173]    [Pg.189]    [Pg.89]    [Pg.110]    [Pg.53]    [Pg.60]    [Pg.292]    [Pg.131]    [Pg.161]    [Pg.211]    [Pg.28]    [Pg.396]   


SEARCH



Effect of solvent-solute interaction

Effective interaction

Effects interaction

Interactive effects

Solute-solvent interactions

Solute-solvent interactions heat effect

Solutions solvents

Solvents, interactive

The solvation effect solute-solvent interaction

© 2024 chempedia.info