Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvent effect on rate constant

PEDRIELLI p, PEDULLi G F and SKIBSTED L H (2001a) Antioxidant mechanism of flavonoids. Solvent effect on rate constant for chain-braining reaction of quercetin and epicatechin in autoxidation of methyl linoleate, JAgric Food Chem, 49, 3034-40. [Pg.344]

Reports on solvent effects on rate constants for aquation of diimine complexes include those on [Fe(5Brphen)3] + and [Fe(4,7-Me2phen)3] " " in methanol- and ethanol-water, [Fe(bipy)3] +, [Fe(phen)3] +, and [Fe(5N02phen)3] + in aqueous methyl D-glycopyranosides, and... [Pg.445]

Figure 2 Diagrammatic summary of selected structural, substituent, and solvent effects on rate constants (kj, at 298 K) for base hydrolysis of low spin iron(II)-diimine complexes. Ligand abbreviations not appearing in the list at the end of this chapter are apmi = (73) with = Me BOH cage = (78) with X = OH ... Figure 2 Diagrammatic summary of selected structural, substituent, and solvent effects on rate constants (kj, at 298 K) for base hydrolysis of low spin iron(II)-diimine complexes. Ligand abbreviations not appearing in the list at the end of this chapter are apmi = (73) with = Me BOH cage = (78) with X = OH ...
Solvatochromic shift data have been obtained for phenol blue in supercritical fluid carbon dioxide both with and without a co-solvent over a wide range in temperature and pressure. At 45°C, SF CO2 must be compressed to a pressure of over 2 kbar in order to obtain a transition energy, E, and likewise a polarizability per unit volume which is comparable to that of liquid n-hexane. The E,j, data can be used to predict that the solvent effect on rate constants of certain reactions is extremely pronounced in the near critical region where the magnitude of the activation volume approaches several liters/mole. [Pg.42]

Solvent effect on rate constants. In this section, the rate constant will be predicted qualitatively in CO2 for the Diels-Alder cycloaddition of isoprene and maleic anhydride, a reaction which has been well-characterized in the liquid state (23,24). In a previous paper, we used E data for phenol blue in ethylene to predict the rate constant of the Menschutkin reaction of tripropylamine and methyliodide (19). The reaction mechanisms are quite different, yet the solvent effect on the rate constant of both reactions can be correlated with E of phenol blue in liquid solvents. The dipole moment increases in the Menschutkin reaction going from the reactant state to the transition state and in phenol blue during electronic excitation, so that the two phenomena are correlated. In the above Diels-Alder reaction, the reaction coordinate is isopolar with a negative activation volume (8,23),... [Pg.47]

The final application of solvatochromic solvent strength scales is the correlation of reaction rate and equilibrium constants in SCF solvents. Solvatochromic scales are often quantitative indicators of the solvent effect on rate constants for a variety of reaction mechanismsU) In a SCF, this solvent effect may be achieved conveniently with a single solvent using pressure. Based on solvatochromic data, it was predicted that an activation volume can reach thousands of mL/mol in a SCF(8). This prediction was confirmed for various types of reactionsClSbZl). For example, the solvatochromic parameter Ex for phenol blue... [Pg.57]

TABLE 8.8 Solvent Effect on Rate Constants for the Sn2 Reaction of CH3I with Cl ... [Pg.498]

Simple pyridinyl radicals, Py, like those derived from 1-ethyl-4-carbomethoxy-pyridinium ion through l reduction, have proven useful for the investigation of properties of radicals, including complexes, and the study of the mechanisms of their reactions. Discoveries include (a) distinction between atom-transfer and electron-transfer reactions by means of solvent effect on rate constants, (b) intramolecular radical complexes (ir-mers) within pyridinyl diradicals and pyridinyl diradical metal halide complexes, (c) occurrence of either electron-transfer or dimerization between pyridinyl radicals in water according to structure and (d) con5)lexation between pyridinium ions and pyridinyl radicals. Consideration of actual and potential biological roles for pyridinyl radicals is aided by these discoveries. [Pg.456]

Ultimately physical theories should be expressed in quantitative terms for testing and use, but because of the eomplexity of liquid systems this can only be accomplished by making severe approximations. For example, it is often neeessary to treat the solvent as a continuous homogeneous medium eharaeterized by bulk properties such as dielectric constant and density, whereas we know that the solvent is a molecular assemblage with short-range structure. This is the basis of the current inability of physical theories to account satisfactorily for the full scope of solvent effects on rates, although they certainly can provide valuable insights and they undoubtedly capture some of the essential features and even cause-effect relationships in solution kinetics. Section 8.3 discusses physical theories in more detail. [Pg.388]

Because the key operation in studying solvent effects on rates is to vary the solvent, evidently the nature of the solvation shell will vary as the solvent is changed. A distinction is often made between general and specific solvent effects, general effects being associated (by hypothesis) with some appropriate physical property such as dielectric constant, and specific effects with particular solute-solvent interactions in the solvation shell. In this context the idea of preferential solvation (or selective solvation) is often invoked. If a reaction is studied in a mixed solvent. [Pg.403]

To calculate the mixed solvent isotope effect on rate constants one applies simple ideas from transition state theory to evaluate the isotope effect on the... [Pg.362]

Chemical reactions at supercritical conditions are good examples of solvation effects on rate constants. While the most compelling reason to carry out reactions at (near) supercritical conditions is the abihty to tune the solvation conditions of the medium (chemical potentials) and attenuate transport limitations by adjustment of the system pressure and/or temperature, there has been considerable speculation on explanations for the unusual behavior (occasionally referred to as anomalies) in reaction kinetics at near and supercritical conditions. True near-critical anomalies in reaction equilibrium, if any, will only appear within an extremely small neighborhood of the system s critical point, which is unattainable for all practical purposes. This is because the near-critical anomaly in the equilibrium extent of the reaction has the same near-critical behavior as the internal energy. However, it is not as clear that the kinetics of reactions should be free of anomalies in the near-critical region. Therefore, a more accurate description of solvent effect on the kinetic rate constant of reactions conducted in or near supercritical media is desirable (Chialvo et al., 1998). [Pg.86]

The use of the Gutmann41 donor and acceptor numbers for describing solvent effects on rates, equilibria and other physicochemical properties has met with some success in organic chemistry. 62 63 However, because the donor and acceptor numbers of mixtures of solvents can not be inferred from the values of the pure solvents but must be determined experimentally, and also because the relationships describing the effects of solvent on chemical reactions were found to apply to non-associated solvents of medium to high dielectric constant, there has been very little attempt to introduce this approach into inorganic systems where the commonly used solvents are protic, i.e. associated. However, one such reaction that has been studied was63 equation (34) ... [Pg.517]

The dissection of solvent influences on rate constants into initial-state and transition-state contributions, especially when combined with a knowledge of solvent effects on the thermodynamic properties of suitable model solutes, is a powerful method for the examination of transition states. In favorable cases with electrically neutral transition states, it is possible to estimate the degree of charge separation in the transition state and its position along the reaction coordinate. Dissections in terms of enthalpy and entropy are useful also in probing specific transition-state/solvent interactions. [Pg.352]

Solvents exert their influence on organic reactions through a complicated mixture of all possible types of noncovalent interactions. Chemists have tried to unravel this entanglement and, ideally, want to assess the relative importance of all interactions separately. In a typical approach, a property of a reaction (e.g. its rate or selectivity) is measured in a laige number of different solvents. All these solvents have unique characteristics, quantified by their physical properties (i.e. refractive index, dielectric constant) or empirical parameters (e.g. ET(30)-value, AN). Linear correlations between a reaction property and one or more of these solvent properties (Linear Free Energy Relationships - LFER) reveal which noncovalent interactions are of major importance. The major drawback of this approach lies in the fact that the solvent parameters are often not independent. Alternatively, theoretical models and computer simulations can provide valuable information. Both methods have been applied successfully in studies of the solvent effects on Diels-Alder reactions. [Pg.8]

The solvent effect on the rate constants of the Diels-Alder reaction of the ionic dienophiles If and Ig... [Pg.174]

Solvent Effects on the Rate of Substitution by the S l Mechanism Table 8 6 lists the relative rate of solvolysis of tert butyl chloride m several media m order of increasing dielectric constant (e) Dielectric constant is a measure of the ability of a material m this case the solvent to moderate the force of attraction between oppositely charged par tides compared with that of a standard The standard dielectric is a vacuum which is assigned a value e of exactly 1 The higher the dielectric constant e the better the medium is able to support separated positively and negatively charged species 8olvents... [Pg.345]

Illuminati and Marino reported an interesting example of the dependence of solvent effects on the position of the reacting center relative to the aza group. The rate constants for the reaction of 2- and 4-chloroquinoline with piperidine were compared in three different solvents, methanol, piperidine, and toluene. These data are reported in Table III. Three main points are apparent from these data (a) the different response of the two substrates to the action of the solvent, (b) the rates for 2-chloroquinoline in the three solvents tend to cluster around the highest reactivity level shown by 4-chloroquinoline in... [Pg.308]

Table 8.1 Solvent Effect on Homopropagation Rate Constants for VAc at 30°C7 f... Table 8.1 Solvent Effect on Homopropagation Rate Constants for VAc at 30°C7 f...
Solvent effects on the rate of the decarbonylation of MeCOMn(CO)5 were examined by Calderazzo and Cotton (50) and are presented in part in Table IV. In general they are very small, and no regular trends can be discerned. This virtual lack of dependence of the rate on the nature of the solvent and very little correlation between the rate and the dielectric constant of the solvent are typical of substitution reactions of metal carbonyls (J). In the light of the foregoing, a qualitative observation that CpFe(CO)2-COMe decarbonylates much more readily on treatment at reflux in nonpolar heptane or cyclohexane than in polar dioxane is somewhat intriguing 219). [Pg.109]


See other pages where Solvent effect on rate constant is mentioned: [Pg.450]    [Pg.356]    [Pg.357]    [Pg.153]    [Pg.230]    [Pg.450]    [Pg.356]    [Pg.357]    [Pg.153]    [Pg.230]    [Pg.497]    [Pg.119]    [Pg.54]    [Pg.180]    [Pg.683]    [Pg.545]    [Pg.137]    [Pg.152]    [Pg.162]    [Pg.149]    [Pg.428]    [Pg.222]    [Pg.893]    [Pg.8]    [Pg.22]    [Pg.54]    [Pg.254]    [Pg.408]    [Pg.779]   
See also in sourсe #XX -- [ Pg.62 ]




SEARCH



Dielectric solvent effect on the radiative rate constant

Effect on Rate Constants

Effective rate constant

Rate constant, effect

Solvent Effect on Homopropagation Rate Constants for VAc at

Solvent Effects on

Solvent constants

© 2024 chempedia.info