Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvation shell, models

Matubayashi N, Gallicchio E, Levy RM (1998) On the local and nonlocal components of solvation shell models. J. Chem Phys. 109 4864 1872... [Pg.223]

In our simple model, the expression in A2.4.135 corresponds to the activation energy for a redox process in which only the interaction between the central ion and the ligands in the primary solvation shell is considered, and this only in the fonn of the totally synnnetrical vibration. In reality, the rate of the electron transfer reaction is also infiuenced by the motion of molecules in the outer solvation shell, as well as by other... [Pg.605]

Specific solute-solvent interactions involving the first solvation shell only can be treated in detail by discrete solvent models. The various approaches like point charge models, siipennoleciilar calculations, quantum theories of reactions in solution, and their implementations in Monte Carlo methods and molecular dynamics simulations like the Car-Parrinello method are discussed elsewhere in this encyclopedia. Here only some points will be briefly mentioned that seem of relevance for later sections. [Pg.839]

In either case, the structure of the solvation shell has to be calculated by otiier methods supplied or introduced ad hoc by some fiirther model assumptions, while charge distributions of the solute and within solvent molecules are obtained from quantum chemistry. [Pg.839]

The quality of the results that can be obtained with point charge or dipole models depends critically on the input solvation shell structure. In view of the computer power available today, taking the most rigorous route... [Pg.839]

R), i.e. there is no effect due to caging of the encounter complex in the common solvation shell. There exist numerous modifications and extensions of this basic theory that not only involve different initial and boundary conditions, but also the inclusion of microscopic structural aspects [31]. Among these are hydrodynamic repulsion at short distances that may be modelled, for example, by a distance-dependent diffiision coefficient... [Pg.844]

Chambers C C, G D Hawkins, C J Cramer and D G Tmlilar 1996. Model for Aqueous Solvation Ba sed on Class IC Atomic Charges and First Solvation Shell Effects. Journal of Physical Chemistry 100 16385-16398. [Pg.650]

The mixed solvent models, where the first solvation sphere is accounted for by including a number of solvent molecules, implicitly include the solute-solvent cavity/ dispersion terms, although the corresponding tenns between the solvent molecules and the continuum are usually neglected. Once discrete solvent molecules are included, however, the problem of configuration sampling arises. Nevertheless, in many cases the first solvation shell is by far the most important, and mixed models may yield substantially better results than pure continuum models, at the price of an increase in computational cost. [Pg.397]

The substituent effects on the H-bonding in an adenine-uracil (A-U) base pair were studied for a series of common functional groups [99JPC(A)8516]. Substitutions in the 5 position of uracil are of particular importance because they are located toward the major groove and can easily be introduced by several chemical methods. Based on DFT calculation with a basis set including diffuse functions, variations of about 1 kcal/mol were found for the two H-bonds. The solvent effects on three different Watson-Crick A-U base pairs (Scheme 100) have been modeled by seven water molecules creating the first solvation shell [98JPC(A)6167]. [Pg.63]

Other studies conducted on mixed protonated clusters of ammonia bound with TMA showed that the ion intensity distributions of (NH3)n(TMA)mH+191 display local maxima at (n,m) = (1,4), (2,3), (2,6), (3,2), and (3,8). Observation that the maximum ion intensity occurs at (n,m) = (1,4), (2,3), and (3,2) indicates that a solvation shell is formed around the NHJ ion with four ligands of any combination of ammonia and TMA molecules. In the situation where the maximum of the ion intensity occurs at (n,m) = (2,6) and (3,8), the experimental results suggest that another solvation shell forms which contains the core ions [H3N-H-NH3]+ (with six available hydrogen-bonding sites) and [H3N-H(NH2)H-NH3]+ (with eight available hydrogen-bonding sites). The observed metastable unimolecular decomposition processes support the above solvation model. [Pg.245]

We summarize this section by emphasizing that we have identified a host of effects, and we have seen that they are mainly short-range effects that are primarily associated with the first solvation shell. A reasonable way to model these effects quantitatively is to assume they are proportional to the number of solvent molecules in the first hydration shell with environment-dependent proportionality constants. [Pg.19]

Finally we address the issue of contributions. In our view it is unbalanced to concentrate on a converged treatment of electrostatics but to ignore other effects. As discussed in section 2.2, first-solvation-shell effects may be included in continuum models in terms of surface tensions. An alternative way to try to include some of them is by scaled particle theory and/or by some ab initio theory... [Pg.28]

In the development of solvation models, Cramer and Tmhalar have made several noteworthy contributions [8-11]. Most of the implicit solvation models do not include the effect of first solvation shell on the solute properties. This can be satisfactorily treated by finding the best effective radii within implicit models. In addition to the first-solvent-shell effects, dispersion interactions and hydrogen bonding are also important in obtaining realistic information on the solvent effect of chemical systems. [Pg.386]

Quantitative models of solute-solvent systems are often divided into two broad classes, depending upon whether the solvent is treated as being composed of discrete molecules or as a continuum. Molecular dynamics and Monte Carlo simulations are examples of the former 8"11 the interaction of a solute molecule with each of hundreds or sometimes even thousands of solvent molecules is explicitly taken into account, over a lengthy series of steps. This clearly puts a considerable demand upon computer resources. The different continuum models,11"16 which have evolved from the work of Bom,17 Bell,18 Kirkwood,19 and Onsager20 in the pre-computer era, view the solvent as a continuous, polarizable isotropic medium in which the solute molecule is contained within a cavity. The division into discrete and continuum models is of course not a rigorous one there are many variants that combine elements of both. For example, the solute molecule might be surrounded by a first solvation shell with the constituents of which it interacts explicitly, while beyond this is the continuum solvent.16... [Pg.22]

It is evident that continuum models can be quite effective, for ionic solutes as well as for neutral ones. They also have the advantage of not being highly demanding in terms of computer resources. However a problem associated with these methods is posed by so-called first-solvation-shell effects 6 One aspect of this is the difficulty of properly accounting for specific types of solute-... [Pg.55]

The level of accuracy that can be achieved by these different methods may be viewed as somewhat remarkable, given the approximations that are involved. For relatively small organic molecules, for instance, the calculated AGsoivation is now usually within less than 1 kcal/mole of the experimental value, often considerably less. Appropriate parametrization is of key importance. Applications to biological systems pose greater problems, due to the size and complexity of the molecules,66 156 159 161 and require the use of semiempirical rather than ab initio quantum-mechanical methods. In terms of computational expense, continuum models have the advantage over discrete molecular ones, but the latter are better able to describe solvent structure and handle first-solvation-shell effects. [Pg.59]


See other pages where Solvation shell, models is mentioned: [Pg.133]    [Pg.461]    [Pg.133]    [Pg.461]    [Pg.2984]    [Pg.625]    [Pg.494]    [Pg.403]    [Pg.12]    [Pg.178]    [Pg.465]    [Pg.270]    [Pg.667]    [Pg.89]    [Pg.270]    [Pg.271]    [Pg.357]    [Pg.9]    [Pg.2]    [Pg.4]    [Pg.17]    [Pg.18]    [Pg.21]    [Pg.29]    [Pg.37]    [Pg.180]    [Pg.301]    [Pg.386]    [Pg.387]    [Pg.392]    [Pg.56]    [Pg.74]    [Pg.119]    [Pg.137]   
See also in sourсe #XX -- [ Pg.37 ]




SEARCH



Modeling solvation

Shell model

Solvate models

Solvate shell

Solvation Models

Solvation shell

© 2024 chempedia.info