Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solution copolymerizations incorporation

Polymers with pendant cyclic carbonate functionality were synthesized via the free radical copolymerization of vinyl ethylene carbonate (4-ethenyl-l,3-dioxolane-2-one, VEC) with other imsaturated monomers. Both solution and emulsion free radical processes were used. In solution copolymerizations, it was found that VEC copolymerizes completely with vinyl ester monomers over a wide compositional range. Conversions of monomer to polymer are quantitative with complete incorporation of VEC into the copolymers. Cyclic carbonate functional latex polymers were prepared by the emulsion copolymerization of VEC with vinyl acetate and butyl acrylate. VEC incorporation was quantitative and did not affect the stability of the latex. When copolymerized with acrylic monomers, however, VEC is not completely incorporated into the copolymer. Sufficient levels can be incorporated to provide adequate cyclic carbonate functionality for subsequent reaction and crosslinking. The unincorporated VEC can be removed using a thin film evaporator. The Tg of VEC copolymers can be modeled over the compositional range studied using either linear or Fox models with extrapolated values of the Tg of VEC homopolymer. [Pg.303]

Solution Copolymerizations. Our primary objective in this preliminary study was to gain a qualitative understanding of the copolymerization behavior of VEC with various types of unsaturated monomers. Particularly, we wanted to determine if VEC could be incorporated into a variety of polymer types of interest to the coatings industry. Since VEC is used to provide cyclic carbonate functionality for subsequent reaction or crosslinking, limited amounts of VEC are used in the copolymerizations. A semi-batch process was used in the copolymerization experiments to approach starved-feed conditions. Starved-feed conditions can result in copolymers with more uniform composition since the conversion is kept high in the reactor. While there are a large number of variables to consider, we elected to focus on monomer composition, polymerization temperature, and initiator level. [Pg.306]

Professor J. Sheets (Rider College) and styrene solution copolymerizations (AIBN) were studied. At feed ratios of 5/95 IS/styrene, pol3nmers with 3 mol % and molecular weights of 1-2 x 10 were obtained. However, at 40/60 feed ratios, 25-30 mol % of was incorporated into polymers of 8-20 x 10 molecular weight. [Pg.263]

The water solubilities of the functional comonomers are reasonably high since they are usually polar compounds. Therefore, the initiation in the water phase may be too rapid when the initiator or the comonomer concentration is high. In such a case, the particle growth stage cannot be suppressed by the diffusion capture mechanism and the solution or dispersion polymerization of the functional comonomer within water phase may accompany the emulsion copolymerization reaction. This leads to the formation of polymeric products in the form of particle, aggregate, or soluble polymer with different compositions and molecular weights. The yield for the incorporation of functional comonomer into the uniform polymeric particles may be low since some of the functional comonomer may polymerize by an undesired mechanism. [Pg.216]

The first step in the process was to covalently incorporate biologically active protein molecules into this polymer. Methods analogous to previous reports (4-6) involved first adding a functional group to the protein that would provide it with the ability to polymerize, such as a vinyl or substituted vinyl group, followed by copolymerization with the N-isopropylacrylamide monomer in aqueous solution using N,N,N, N -tetramethylethylenediamine and... [Pg.245]

Deviations are also observed in some copolymerizations where the copolymer formed is poorly soluble in the reaction medium [Pichot and Pham, 1979 Pichot et al., 1979 Suggate, 1978, 1979]. Under these conditions, altered copolymer compositions are observed if one of the monomers is preferentially adsorbed by the copolymer. Thus for methyl methacrylate (M1 )-/V-vinylcarbazole (M2) copolymerization, r — 1.80, r2 = 0.06 in benzene but r — 0.57, > 2 0.75 in methanol [Ledwith et al., 1979]. The propagating copolymer chains are completely soluble in benzene but are microheterogeneous in methanol. /V-vinylcarba-zole (NVC) is preferentially adsorbed by the copolymer compared to methyl methacrylate. The comonomer composition in the domain of the propagating radical sites (trapped in the precipitating copolymer) is richer in NVC than the comonomer feed composition in the bulk solution. NVC enters the copolymer to a greater extent than expected on the basis of feed composition. Similar results occur in template copolymerization (Sec. 3-10d-2), where two monomers undergo copolymerization in the presence of a polymer. Thus, acrylic acid-2-hydroxyethylmethacrylate copolymerization in the presence of poly(V-vinylpyrrolidone) results in increased incorporation of acrylic acid [Rainaldi et al., 2000]. [Pg.488]

The copolymerization of a rue thy latcd-/ -cy c 1 odextri n 1 1 host-guest compound of styrene with various molar ratios of sodium 4-(acrylamido)-phenyldiazosulfonate carried out in water with free radical initiator is described [40]. Depending on the amount of sodium 4-(aciylamido)-phenyldiazosulfonate incorporated in the copolymer, water- or DMF-soluble copolymers of high molar mass were obtained. Irradiation of the copolymers with UV light in solution resulted in rapid decomposition of the azo chromophore. Irradiation of the polymers as films led to crosslinking and thus to insolubility. [Pg.210]

For different applications, water-soluble neutral and ionic comonomers can be incorporated into or attached to the PNIPAM chain backbone to form amphiphilic PNIPAM copolymers via free-radical copolymerization. In this section, we will use the folding of neutral PNIPAM amphiphilic copolymer chains in extremely dilute solutions ( pg/mL) to illustrate a general feature of the folding of hydrophilically modified copolymer chains. [Pg.123]

Different materials for the hydrophobic membrane in which the receptor is incorporated, have been investigated. Polysiloxanes that have the required glass transition temperature and dielectric constant provide a stable chemical system that transduces the complexation of cationic species into electronic signals. The material properties can be optimized by copolymerization of three building blocks viz. dimethyl-, (3-cyanopropyl)methyl-, and methacryloxypropylmethyl siloxane. CHEMFETs made with this terpolymer have fast response times (<. 1 sec.). With valinomycin and hemispherands (2) and (3) linear responses to changing K+ concentrations are obtained in the range 10"5 - 1.0M (55-58 mV/decade) in a solution of 0.1M NaCl. Similar devices specific for Na+ and Ca2+ have been obtained with other ionophores. [Pg.206]

Copolymerization of vinyl chloride with metal salts of unsaturated carboxylic acids has been investigated more closely. By radical copolymerization in methanol solution of vinyl chloride and lead acrylate small amounts of lead acrylate can be inserted into the copolymer chains. However, only about one-third to one-half of the lead salt originally present in the monomer mixture is incorporated in the chains. Moreover, the thermal stability of the resulting polymer shows only a relatively small improvement over that of homopolymeric vinyl chloride (1) (see Figure 4). Although the rate of dehydrochlorination is distinctly lowered with increasing lead content in the polymers, there is no induction period at the onset of thermal treatment. Therefore, one cannot speak of true stabilization in this case. [Pg.88]

The copolymerization with alkyllithium to produce uniformly random copolymers is more complex for the solution process than for emulsion because of the tendency for the styrene to form blocks. Because of the extremely high rate of reaction of the styryl-lithium anion with butadiene, the polymerization very heavily favors the incorporation of butadiene units as long as reasonable concentrations of butadiene are present. This observation initially was somewhat confusing because the homopolymerization rate of styrene is seven times that for butadiene. However, the cross-propagation rate is orders of magnitude faster than either, and it therefore dominates the system. For a 30 mole percent styrene charge the initial polymer will be almost pure butadiene until most of the butadiene is polymerized. Typically two-thirds of the styrene charged will be found as a block of polystyrene at the tail end of the polymer chain ... [Pg.702]


See other pages where Solution copolymerizations incorporation is mentioned: [Pg.338]    [Pg.279]    [Pg.532]    [Pg.156]    [Pg.739]    [Pg.395]    [Pg.454]    [Pg.52]    [Pg.22]    [Pg.8]    [Pg.156]    [Pg.529]    [Pg.460]    [Pg.32]    [Pg.310]    [Pg.128]    [Pg.27]    [Pg.771]    [Pg.101]    [Pg.1682]    [Pg.826]    [Pg.20]    [Pg.672]    [Pg.194]    [Pg.151]    [Pg.240]    [Pg.209]    [Pg.31]    [Pg.53]    [Pg.295]    [Pg.532]    [Pg.323]    [Pg.223]    [Pg.229]    [Pg.237]    [Pg.47]    [Pg.221]    [Pg.323]    [Pg.31]   
See also in sourсe #XX -- [ Pg.307 , Pg.308 ]




SEARCH



Solutes incorporation

Solution copolymerizations

© 2024 chempedia.info