Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Soluble ionic liquid supports

The same authors have also reported 1,3-dipolar cycloadditions using 2-hydroxy and 3-hydroxybenzaldehydes grafted on a soluble ionic liquid support [62]. New benzaldehyde-supported ionic liquids were prepared via two different routes. In the first approach the synthesis started from an N-alkylimidazole and 2-chloroethanol, thermolysis of which, followed by anion exchange to form the BF4 or PF ionic liquid, gave the desired supports. After esterification with an acid-functionalized 2-hydroxybenzaldehyde, excellent yields of the benzaldehyde-supported ionic liquids were obtained. The synthetic approach is shown in Scheme 7.13. [Pg.343]

Multicomponent Reactions Using Soluble Ionic Liquid Supports and Microwave Heating... [Pg.350]

Abstract Current microwave-assisted protocols for reaction on solid-phase and soluble supports are critically reviewed. The compatibility of commercially available polymer supports with the relatively harsh conditions of microwave heating and the possibilities for reaction monitoring are discussed. Instrmnentation available for microwave-assisted solid-phase chemistry is presented. This review also summarizes the recent applications of controlled microwave heating to sohd-phase and SPOT-chemistry, as well as to synthesis on soluble polymers, fluorous phases and functional ionic liquid supports. The presented examples indicate that the combination of microwave dielectric heating with solid- or soluble-polymer supported chemistry techniques provides significant enhancements both at the level of reaction rate and ease of purification compared to conventional procedures. [Pg.80]

A series of supported chiral VO(salen) complexes anchored on silica, single-wall carbon nanotube, achvated carbon or ionic liquids have been prepared through the simple methods based on the addition of mercapto groups to terminal C=C double bonds (Scheme 7.17) [58]. The four recoverable catalysts and the standard VO(salen) complex 37 were tested for the enantioselechve cyanosilylation of benzaldehyde using trimethylsilyl cyanide (Table 7.9). It should be noted that the ionic liquid-supported IL-VO(salen) showed the highest catalyhc achvity, though the ee-value was considerably reduced compared to the soluble 37 in [bmim][PF6] (entries 4 and 5). [Pg.256]

Song et al. [46] have used a carboxyl-functionalized ionic liquid as soluble support to synthesize a small library of 4-aminophenyl ethers via Williamson reaction and extracting with ethyl acetate in good yields (75-80%) and purities (99%). The recovered ionic liquid support was reused several times with consistent loading capacity (Scheme 5.5-30). [Pg.508]

As with organic solvents, proteins are not soluble in most of the ionic liquids when they are used as pure solvent. As a result, the enzyme is either applied in immobilized form, coupled to a support, or as a suspension in its native form. For production processes, the majority of enzymes are used as immobilized catalysts in order to facilitate handling and to improve their operational stability [24—26]. As support, either inorganic materials such as porous glass or different organic polymers are used [27]. These heterogeneous catalyst particles are subject to internal and external... [Pg.338]

In addition to the examples described above, functionalized ionic liquids have been recently introduced as microwave-compatible soluble supports [137,138]. [Pg.87]

Miao, W. Chan, T.H. (2003) Exploration of Ionic Liquids as Soluble Supports for Organic Synthesis. Demonstration with a Suzuki Coupling Reaction. Organic Letters, 5, 5003-5005. [Pg.185]

The very first report on the use of ionic liquids as soluble supports was presented by Fraga-Dubreuil and Bazureau in 2001 [102]. The efficacy of a microwave-induced solvent-free Knoevenagel condensation of a formyl group on the ionic liquid (IL) phase with malonate derivatives (E1CH2E2) catalyzed by 2 mol% of piperidine was studied (Scheme 7.89). The progress of the reaction could be easily monitored by 1H and 13C NMR spectroscopy, and the final products could be cleaved from the IL... [Pg.356]

Recently, there has been considerable interest in developing molten salts that are less air and moisture sensitive. Melts such as l-methyl-3-butylimidazolium hexa-fluorophosphate [211], l-ethyl-3-methylimidazolium trifluoromethanesulfonate [212], and l-ethyl-3-methylimidazolium tetrafluoroborate [213] are reported to be hydro-phobic and stable under environmental conditions. In some cases, metal deposition from these electrolytes has been explored [214]. They possess a wide potential window and sufficient ionic conductivity to be considered for many electrochemical applications. Of course if one wishes to take advantage of their potential air stability, one loses the opportunity to work with the alkali and reactive metals. Further, since these ionic liquids are neutral and lack the adjustable Lewis acidity common to the chloroaluminates, the solubility of transition metal salts into these electrolytes may be limited. On a positive note, these electrolytes are significantly different from the chloroaluminates in that the supporting electrolyte is not intended to be electroactive. [Pg.339]

These alternative processes can be divided into two main categories, those that involve insoluble (Chapter 3) or soluble (Chapter 4) supports coupled with continuous flow operation or filtration on the macro - nano scale, and those in which the catalyst is immobilised in a separate phase from the product. These chapters are introduced by a discussion of aqueous biphasic systems (Chapter 5), which have already been commercialised. Other chapters then discuss newer approaches involving fluorous solvents (Chapter 6), ionic liquids (Chapter 7) and supercritical fluids (Chapter 8). [Pg.8]

In the ideal biphasic hydrogenation process, the substrate will be more soluble or partially soluble in the immobilization solvent and the hydrogenation product will be insoluble as this facilitates both reaction and product separation. Mixing problems are sometimes encountered with biphasic processes and much work has been conducted to elucidate exactly where catalysis takes place (see Chapter 2). Clearly, if the substrates are soluble in the catalyst support phase, then mixing is not an issue. The hydrogenation of benzene to cyclohexane in tetrafluoroborate ionic liquids exploits the differing solubilities of the substrate and product. The solubility of benzene and cyclohexane has been measured in... [Pg.166]

Supporting ionic liquids in the pores of solid materials offers the advantage of high surface areas between the reactant phase and that containing the supported liquid catalyst. This approach is particularly useful for reactants with less than desired solubility in the bulk liquid phase. Another incentive for using such catalysts is that they can be used in continuous processes with fixed-bed reactors (26S). The use of an ionic liquid in the supported phase in addition to an active catalyst can help to improve product selectivity, with the benefit being similar to what was shown for biphasic systems. However, care has to be taken to avoid leaching the supported liquids, particularly when the reactants are concentrated in a liquid phase. [Pg.220]

An ionic liquid was fully immobilized, rather than merely supported, on the surface of silica through a multiple-step synthesis as shown in Fig. 15 (97). A ligand tri(m-sulfonyl)triphenyl phosphine tris(l-butyl-3-methyl-imidazolium) salt (tppti) was prepared so that the catalyst, formed from dicarbonylacetylacetonate rhodium and the ligand (P/Rh = 10), could be soluble in both [BMIMJBFq and [BMIM]PF6. The supported ionic liquid-catalyst systems showed nearly three times higher rate of reaction (rate constant = 65 min ) that a biphasic system for the hydroformylation of 1-hexene at 100°C and 1500 psi in a batch reactor, but the n/i selectivity was nearly constant the same for the two ( 2.4). Unfortunately, both the supported and the biphasic ionic liquid systems exhibited similar metal leaching behavior. [Pg.222]

Three ionic liquids were purchased from Aldrich l-butyl-3-methylimidazolium chloride, l-butyl-3-methylimidazolium hexafluorophosphate and l-butyl-3-methylimidazolium tetrafluoroborate. Homogeneous Co (II) catalyst precursors used in our experiments include Co(BF4)2, Co(OAc)2, and Co(C104)2 each of which have high solubilities in above ionic liquids. High surface area catalyst supports Si02 and AI2O3 were obtained from Davison and Engelhard, respectively. [Pg.96]

Fatty acids of sugars are potentially useful and fully green nonionic surfactants, but the lipase-mediated esterification of carbohydrates is hampered by the low solubility of carbohydrates in reaction media that support lipase catalysis in general. Because the monoacylated product (Figure 10.8) is more soluble in traditional solvents than is the starting compound, the former tends to undergo further acylation into a diester. In contrast, the CaLB-catalyzed esterification of glucose with vinyl acetate in the ionic liquid [EMIm][BF4] was completely selective. The reaction became much faster and somewhat less selective when conducted in... [Pg.237]


See other pages where Soluble ionic liquid supports is mentioned: [Pg.349]    [Pg.349]    [Pg.166]    [Pg.168]    [Pg.340]    [Pg.446]    [Pg.502]    [Pg.516]    [Pg.253]    [Pg.618]    [Pg.834]    [Pg.618]    [Pg.834]    [Pg.112]    [Pg.78]    [Pg.123]    [Pg.73]    [Pg.113]    [Pg.223]    [Pg.231]    [Pg.56]    [Pg.54]    [Pg.54]    [Pg.53]    [Pg.299]    [Pg.464]    [Pg.231]    [Pg.184]    [Pg.92]    [Pg.78]   
See also in sourсe #XX -- [ Pg.350 , Pg.757 ]




SEARCH



Ionic solubility

Ionic supported

Ionic supports

Liquid solubility

Soluble support

Supported Ionic Liquids

© 2024 chempedia.info