Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Proline solubility

HydTOX5 proline-derived polyesters are usually readily soluble in a variety of organic solvents (benzene, toluene, chloroform, dichloro-methane, carbon tetrachloride, tetrahydrofuran, dimethylformamide, etc.) As expected, the solubility in hydrophobic solvents increased with increasing chain length of the N protecting group, while the solubility in polar solvents decreased. For example, poly(N-hexanoyl-hydroxyproline ester) is slightly soluble in ether but easily soluble in acetonitrile, while poly(N-palmitoylhydroxyproline ester) is readily soluble in ether but virtually insoluble in acetonitrile. [Pg.205]

Evidence exists that the relative solubility of amines and inhibitors in heterogeneous oil-water systems could be decisive in formation of nitrosamines and blocking these reactions, Nitrosopyrrolidine formation in bacon predominates in the adipose tissue despite the fact that its precursor, proline, predominates in the lean tissue (5,6,7). Mottram and Patterson (8) partly attribute this phenomenon to the fact that the adipose tissue furnishes a medium in which nitrosation is favored, Massey, et al, (9) found that the presence of decane in a model heterogeneous system caused a 20-fold increase in rate of nitrosamine formation from lipophilic dihexylamine, but had no effect on nitrosation of hydrophilic pyrrolidine. Ascorbic acid in the presence of decane enhanced the synthesis of nitrosamines from lipophilic amines, but had no effect on nitrosation of pyrrolidine. The oil-soluble inhibitor ascorbyl palmitate had little influence on the formation of nitrosamines in the presence or absence of decane. [Pg.150]

Proline, however, is the predominant amino acid and most interestingly, its betalamic acid adduct indicaxanthin is the major betalain pigment in cactus pear. Proline functions as an osmolyte, accumulating in water- and heat-stressed plant tissues, and in comparison to other amino acids, it exhibits an extraordinarily high solubility of 1623 mg/L water at 25°C. ... [Pg.285]

Kragl and Dreisbach (1996) have carried out the enantioselective addition of diethyl zinc to benzaldehyde in a continuous asymmetric membrane reactor using a homogeneous soluble catalyst, described in their paper. Here a,a-diphenyl-L-proline was used as a chiral ligand, coupled to a copolymer made from 2-hydroxy ethyl methacrylate and octadecyl methacrylate, which had a sufficiently high molecular weight to allow separation by ultra-filtration (U/F). The solvent-stable polyaramide U/F Hoechst Nadir UF PA20 retained more than 99.8% of the catalyst. The ee was 80 %, compared to 98 % for a noncoupled catalyst. [Pg.171]

Finally, the solubility of the amino acids is also important. Only those amino acids that are readily soluble in water, such as glycine, alanine, valine, and proline, can be employed to construct the present family of 3d-4f amino acid compounds. [Pg.212]

The method of protein hydrolysis was important acid hydrolysis caused destruction of tryptophan but alkaline treatment gave even greater losses of other amino acids especially cystine. The amino acids were usually separated by then standard chemical procedures based on differences in solubility, selective precipitation by agents such as Reinecke salt (proline and hydroxyproline), or flavianic acid (arginine). [Pg.167]

Prolyl 4-hydroxylation is the most abundant posttranslational modification of collagens. 4-Hydroxylation of proline residues increases the stability of the triple helix and is a key element in the folding of the collagen triple helix. " In vertebrates, almost all the Yaa position prolines of the Gly-Xaa-Yaa repeat are modified to 4(I( )-hydroxylproline by the enzyme P4H (EC 1.14.11.2), a member of Fe(II)- and 2-oxoglutarate-dependent dioxygenases. This enzyme is an 0 2/ b2-type heterotetramer in which the / subunit is PDI (EC 5.3.4.1), which is a ubiquitous disulfide bond catalyst. The P4H a subunit needs the 13 subunit for solubility however, the 13 subunit, PDI, is soluble by itself and is present in excess in the ER. Three isoforms of the a subunit have been identified and shown to combine with PDI to form [a(I)]2/ 2) [< (II)]2/32> or [a(III)]2/32 tetramers, called the type... [Pg.493]

Carbenoids derived from the aryldiazoacetates are excellent donor/acceptor systems for the asymmetric cyclopropanation reaction [22]. Methyl phenyldiazoacetate 3 cyclopropanation of monosubstituted alkenes catalyzed by Rh2(S-DOSP)4 is highly diaster-eo- and enantioselective (Tab. 14.5) [22]. Higher enantioselectivities can be obtained when these reactions are performed at -78°C, as the catalyst maintains high solubility and activity at this temperature. The phenyldiazoacetate system has been evaluated using many popular rhodium(II) and copper catalysts the rhodium(ll) prolinates have proven to be superior catalysts for this class of carbenoids [37, 38]. [Pg.305]

Only proteins that contain proline bind polyphenols. Asano et al. (1982) demonstrated that the haze-forming activity of a protein is roughly proportional to the mole percentage of proline it contains (see Fig. 2.3). DNA has codes for exactly 20 amino acids. If each of these were equally present in a protein, there would be 5 mol% of each one. In fact, most proteins have much less proline than this. There are a few exceptions. Casein has about 8 mol% proline and the grain prolamins (proline-rich, alcohol-soluble proteins) are even higher. Hordein, the barley prolamin, contains about 20 mol% proline. As a result, it readily forms haze with polyphenols and is the main beer haze-active (HA) protein. Hordein contains even more glutamine (Q) than proline (P), and often these amino acids are adjacent in the protein (see Fig. 2.4). In fact, the sequence P-Q-Q-P occurs... [Pg.60]

In addition, lactams can be prepared by the present technique under heterogeneous conditions although most amino acids are barely soluble in nonaqueous solvents (Table II). Interestingly, (S)-(-)-proline selectively gives the cyclic dimer with no measurable loss of enantiomeric purity. [Pg.238]

Proline.—This is the only product of hydrolysis obtained from an ester fraction which is soluble in alcohol it is also much more easily soluble in water than the other products with which it is present and therefore is somewhat easily separated, as it remains in the mother-liquor after these have crystallised out. The solution, in which it is contained, is evaporated to dryness and extracted with absolute alcohol the combined alcoholic extracts from the several fractions are evaporated to dryness and taken up by absolute alcohol several times, so as to remove small amounts of the other amino acids, which, though insoluble in alcohol, are dissolved when proline is present. [Pg.13]

This chapter deals with the very important a-amino acids, the building blocks of the proteins that are necessary for the function and structure of living ceils. Enzymes, the highly specific biochemical catalysts are proteins. or-Amino acids are dipolar ions (zwitterions), RCH(N" H,)COO , as is indicated by their crystallinity, high melting point, and solubility in water rather than in nonpolar solvents. The standard (naturally occurring) amino acids are listed in Table 21-1 those marked with an asterisk are essential amino acids that cannot be synthesized in the body and so must be in the diet. They have 1° NHj s except for proline and hydroxyproline (2°). They have different R groups. [Pg.474]


See other pages where Proline solubility is mentioned: [Pg.182]    [Pg.367]    [Pg.182]    [Pg.367]    [Pg.239]    [Pg.152]    [Pg.83]    [Pg.14]    [Pg.16]    [Pg.16]    [Pg.423]    [Pg.635]    [Pg.195]    [Pg.105]    [Pg.155]    [Pg.539]    [Pg.209]    [Pg.196]    [Pg.178]    [Pg.355]    [Pg.350]    [Pg.350]    [Pg.56]    [Pg.220]    [Pg.236]    [Pg.260]    [Pg.313]    [Pg.255]    [Pg.344]    [Pg.165]    [Pg.205]    [Pg.13]    [Pg.260]    [Pg.26]    [Pg.63]    [Pg.66]    [Pg.304]    [Pg.367]    [Pg.414]    [Pg.115]    [Pg.223]   
See also in sourсe #XX -- [ Pg.11 ]

See also in sourсe #XX -- [ Pg.321 ]




SEARCH



© 2024 chempedia.info