Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solids crystalline solid electronic structures

The most extensive calculations of the electronic structure of fullerenes so far have been done for Ceo- Representative results for the energy levels of the free Ceo molecule are shown in Fig. 5(a) [60]. Because of the molecular nature of solid C o, the electronic structure for the solid phase is expected to be closely related to that of the free molecule [61]. An LDA calculation for the crystalline phase is shown in Fig. 5(b) for the energy bands derived from the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) for Cgo, and the band gap between the LUMO and HOMO-derived energy bands is shown on the figure. The LDA calculations are one-electron treatments which tend to underestimate the actual bandgap. Nevertheless, such calculations are widely used in the fullerene literature to provide physical insights about many of the physical properties. [Pg.47]

Calculations for Ceo in the LDA approximation [62, 60] yield a narrow band (- 0.4 0.6 eV bandwidth) solid, with a HOMO-LUMO-derived direct band gap of - 1.5 eV at the X point of the fee Brillouin zone. The narrow energy bands and the molecular nature of the electronic structure of fullerenes are indicative of a highly correlated electron system. Since the HOMO and LUMO levels both have the same odd parity, electric dipole transitions between these levels are symmetry forbidden in the free Ceo moleeule. In the crystalline solid, transitions between the direct bandgap states at the T and X points in the cubic Brillouin zone arc also forbidden, but are allowed at the lower symmetry points in the Brillouin zone. The allowed electric dipole... [Pg.47]

To answer this question we need to consider the kind of physical techniques that are used to study the solid state. The main ones are based on diffraction, which may be of electrons, neutrons or X-rays (Moore, 1972 Franks, 1983). In all cases exposure of a crystalline solid to a beam of the particular type gives rise to a well-defined diffraction pattern, which by appropriate mathematical techniques can be interpreted to give information about the structure of the solid. When a liquid such as water is exposed to X-rays, electrons or neutrons, diffraction patterns are produced, though they have much less regularity and detail it is also more difficult to interpret them than for solids. Such results are taken to show that liquids do, in fact, have some kind of long-range order which can justifiably be referred to as a structure . [Pg.34]

A general presentation and discussion of the origin of structure of crystalline solids and of the structural stability of compounds and solid solutions was given by Villars (1995) and Pettifor (1995). For an introduction to the electronic structure of extended systems, see Hoffmann (1987, 1988). In this chapter a brief sampling of some useful semi-empirical correlations and, respectively, of methods of classifying (predicting) phase and structure formation will be summarized. [Pg.237]

As noted earlier, the diffraction of X-rays, unlike the diffraction of neutrons, is primarily sensitive to the distribution of 00 separations. Although many of the early studies 9> of amorphous solid water included electron or X-ray diffraction measurements, the nature of the samples prepared and the restricted angular range of the measurements reported combine to prevent extraction of detailed structural information. The most complete of the early X-ray studies is by Bon-dot 26>. Only scanty description is given of the conditions of deposition but it appears likely his sample of amorphous solid water had little or no contamination with crystalline ice. He found a liquid-like distribution of 00 separations at 83 K, with the first neighbor peak centered at 2.77 A. If the pair correlation function is decomposed into a superposition of Gaussian peaks, the area of the near neighbor peak is found to correspond to 4.23 molecules, and to have a root mean square width of 0.50 A. [Pg.127]

Using solid-state physics and physical metallurgy concepts, advanced non-destructive electronic tools can be developed to rapidly characterize material properties. Non-destructive tools operate at the electronic level, therefore assessing the electronic structure of the material and any perturbations in the structure due to crystallinity, defects, microstructural phases and their features, manufacturing and processing, and service-induced strains.1 Electronic, magnetic, and elastic properties have all been correlated to fundamental properties of materials.2 5 An analysis of the relationship of physics to properties can be found in Olson et al.1... [Pg.201]

Greenish blue to black crystalline solid hexagonal or cubic crystals dia-mond-like structure density 3.217g/cm3 exceedingly hard, Mohs hardness 9.5 sublimes at about 2,700°C dielectric constant 7.0 electron mobility >100 cm /volt-sec hole mobility >20cm2/volt-sec band gap energy 2.8 eV insoluble in water and acids solubilized by fusion with caustic potash. [Pg.822]

When studying the electronic structure of crystalline solids, physicists tend to think in terms of the mathematical concept of electronic bands, the so-called dispersion... [Pg.54]

The above simple picture of solids is not universally true because we have a class of crystalline solids, known as Mott insulators, whose electronic properties radically contradict the elementary band theory. Typical examples of Mott insulators are MnO, CoO and NiO, possessing the rocksalt structure. Here the only states in the vicinity of the Fermi level would be the 3d states. The cation d orbitals in the rocksalt structure would be split into t g and eg sets by the octahedral crystal field of the anions. In the transition-metal monoxides, TiO-NiO (3d -3d% the d levels would be partly filled and hence the simple band theory predicts them to be metallic. The prediction is true in TiO... [Pg.284]


See other pages where Solids crystalline solid electronic structures is mentioned: [Pg.22]    [Pg.241]    [Pg.50]    [Pg.137]    [Pg.2]    [Pg.1361]    [Pg.361]    [Pg.394]    [Pg.776]    [Pg.1062]    [Pg.88]    [Pg.461]    [Pg.9]    [Pg.239]    [Pg.367]    [Pg.291]    [Pg.294]    [Pg.144]    [Pg.426]    [Pg.534]    [Pg.71]    [Pg.46]    [Pg.248]    [Pg.143]    [Pg.291]    [Pg.235]    [Pg.34]    [Pg.376]    [Pg.51]    [Pg.149]    [Pg.179]    [Pg.37]    [Pg.468]    [Pg.283]    [Pg.284]    [Pg.341]    [Pg.107]    [Pg.116]   
See also in sourсe #XX -- [ Pg.1171 , Pg.1172 , Pg.1173 , Pg.1174 , Pg.1175 , Pg.1176 , Pg.1177 , Pg.1178 ]




SEARCH



Crystalline Electron

Crystalline Electronic

Crystalline solid electronic structure

Crystalline solids structure

Electron crystallinity

Electronic structure of crystalline solid

Structure crystalline solid electronic structures

The Electronic Structure of Crystalline Solids

© 2024 chempedia.info