Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solid samples, direct introduction

From the late 1960s onwards, a number of research groups around the world began to investigate alternatives to pneumatic nebulization for sample introduction, in an attempt to overcome transport efficiency limitations. The most successful approaches were those which involved heating small, discrete liquid samples, and sometimes even solid samples, directly on a metal filament, boat, or cup which could be positioned reproducibly into a flame. However, since the temperature of the metal would be lower than that of the flame itself, the techniques were confined to the determination of relatively easily atomized elements such as arsenic, bismuth, cadmium, copper, mercury, lead, selenium, silver, tellurium, thallium, and zinc. [Pg.73]

In some cases, it may be convenient to dissolve a solid and present it for analysis as a solution that can be nebulized and sprayed as an aerosol (mixed droplets and vapor) into the plasma flame. This aspect of analysis is partly covered in Part B (Chapter 16), which describes the introduction of solutions. There are vaporization techniques for solutions of solids other than nebulization, but since these require prior evaporation of the solvent, they are covered here. There are also many solid samples that need to be analyzed directly, and this chapter describes commonly used methods to do so. [Pg.110]

As already remarked in Sect. 4.5.1 (Introduction), LA was primarily designed as a technique for direct sampling in the bulk analysis of solid samples. The main advantages of LA are the possibility of ablating all types of solid material (metals, isolators, glasses, crystals, minerals ceramics, etc.), no special requirements on the... [Pg.239]

Difficult matrix introduction (DMI) is another recently introduced way of automating trace analysis in complex and dirty matrices [101]. The technique may be used for both liquid and dirty solid samples. In DMI a sample extract or sample matrix (solid) is introduced directly into a microvial in the injector. Volatiles are desorbed directly... [Pg.192]

Cl and El are both limited to materials that can be transferred to the ion source of a mass spectrometer without significant degradation prior to ionisation. This is accomplished either directly in the high vacuum of the mass spectrometer, or with heating of the material in the high vacuum. Sample introduction into the Cl source thus may take place by a direct insertion probe (including those of the desorption chemical ionisation type) for solid samples a GC interface for reasonably volatile samples in solution a reference inlet for calibration materials or a particle-beam interface for more polar organic molecules. This is not unlike the options for El operation. [Pg.363]

Principles and Characteristics As mentioned already (Section 3.5.2) solid-phase microextraction involves the use of a micro-fibre which is exposed to the analyte(s) for a prespecified time. GC-MS is an ideal detector after SPME extraction/injection for both qualitative and quantitative analysis. For SPME-GC analysis, the fibre is forced into the chromatography capillary injector, where the entire extraction is desorbed. A high linear flow-rate of the carrier gas along the fibre is essential to ensure complete desorption of the analytes. Because no solvent is injected, and the analytes are rapidly desorbed on to the column, minimum detection limits are improved and resolution is maintained. Online coupling of conventional fibre-based SPME coupled with GC is now becoming routine. Automated SPME takes the sample directly from bottle to gas chromatograph. Split/splitless, on-column and PTV injection are compatible with SPME. SPME can also be used very effectively for sample introduction to fast GC systems, provided that a dedicated injector is used for this purpose [69,70],... [Pg.437]

Different analytical procedures have been developed for direct atomic spectrometry of solids applicable to inorganic and organic materials in the form of powders, granulate, fibres, foils or sheets. For sample introduction without prior dissolution, a sample can also be suspended in a suitable solvent. Slurry techniques have not been used in relation to polymer/additive analysis. The required amount of sample taken for analysis typically ranges from 0.1 to 10 mg for analyte concentrations in the ppm and ppb range. In direct solid sampling method development, the mass of sample to be used is determined by the sensitivity of the available analytical lines. Physical methods are direct and relative instrumental methods, subjected to matrix-dependent physical and nonspectral interferences. Standard reference samples may be used to compensate for systematic errors. The minimum difficulties cause INAA, SNMS, XRF (for thin samples), TXRF and PIXE. [Pg.626]

Direct introduction of a sample, either in solid or liquid state, in the ion source of a mass spectrometer may be achieved through two procedures the first one is based on the use of a direct insertion probe (DIP) the second one necessitates a direct exposure probe (DEP). Direct introduction followed by heating of the sample in the ion source of the mass spectrometer is also known as direct temperature resolved mass spectrometry (DTMS). [Pg.101]

The introduction of inductively coupled plasma (ICP) in inorganic mass spectrometry means that there is an effective ion source operating at atmospheric pressure. Whereas solid mass spectrometric techniques allow direct analysis of solid samples in ICP-MS, the determination of trace impurities or isotope ratios in solid samples is often carried out after digestion and dissolution of the material. For the determination of trace impurities and isotope ratios in liquids, an additional nebulization... [Pg.27]

The analyses were carried out at the Field Museum of Natural History in Chicago, IL. The instrumentation is a Varian inductively coupled plasma-mass spectrometer (ICP-MS) equivalent to the actual Varian 810 instrument. A New Wave UP213 laser is connected to the ICP-MS for direct introduction of solid samples. [Pg.337]

Mixed Gas Plasmas. Water loading can be reduced by a desolvation system (condenser or membrane separator) only if the vast majority of the water can be removed. One way to eliminate the introduction of water into the plasma during measurement of the analyte signals is with electrothermal vaporization, laser ablation, or other direct solid sampling techniques. Mixed gas plasmas,... [Pg.106]

Several methods are in general use for introduction of a material into the flame. These include solution aspiration, gas (hydride) evolution and entrainment into the flame, and direct introduction of solid substrates. All three have been used for flame-AAS analysis of trace elements from air sampling however, most work is carried out by use of the first two methods. In each case a suitable solution is first obtained by the dissolution of the elements of interest from the sample. Sample dissolution will be discussed in greater detail in a following section. [Pg.125]

Direct introduction probe. The solid sample to be analysed is placed in a gold or glass crucible at the tip of a probe which can be introduced through a vacuum lock into close proximity with the ionizing electron beam. The temperature of the probe tip is controlled to maintain a steady evaporation rate of the sample. [Pg.7]

Fig. 4.1. Hydride and cold mercury vapour separators. (A) Sandwich-type. (B) Tubular-type. (C) Modified Vijan-type. (D) Commercial-type (Perkin-Elmer FIAS-200 module). (E) With direct introduction of the stripping gas into the separator. (F) Dismountable separator for solid samples. (Reproduced with permission of the Royal Society of Chemistry and Perkin-Elmer.)... Fig. 4.1. Hydride and cold mercury vapour separators. (A) Sandwich-type. (B) Tubular-type. (C) Modified Vijan-type. (D) Commercial-type (Perkin-Elmer FIAS-200 module). (E) With direct introduction of the stripping gas into the separator. (F) Dismountable separator for solid samples. (Reproduced with permission of the Royal Society of Chemistry and Perkin-Elmer.)...

See other pages where Solid samples, direct introduction is mentioned: [Pg.554]    [Pg.114]    [Pg.639]    [Pg.240]    [Pg.361]    [Pg.370]    [Pg.412]    [Pg.626]    [Pg.43]    [Pg.101]    [Pg.173]    [Pg.145]    [Pg.16]    [Pg.38]    [Pg.43]    [Pg.67]    [Pg.120]    [Pg.300]    [Pg.395]    [Pg.21]    [Pg.85]    [Pg.88]    [Pg.167]    [Pg.16]    [Pg.38]    [Pg.43]    [Pg.67]    [Pg.120]    [Pg.300]    [Pg.395]    [Pg.217]    [Pg.377]    [Pg.399]   


SEARCH



Direct Introduction of Solid Samples

Direct introduction

Direct sample introduction

Direct sampling

Direct solid sampling

Sample introduction

Sample solid samples

Sampling solids

Solid direct

Solids introduction

© 2024 chempedia.info