Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sodium electrons

S = Heat of sublimation of sodium D = Dissociation energy of chlorine / = Ionization energy of sodium = Electron affinity of chlorine Uq = Lattice energy of sodium chloride AHf = Heat of formation of sodium chloride. [Pg.64]

Poly(2-methoxy, 5-(2 -ethylhexyloxy)-1,4-phenylene vinylene) MEH-PPV Emission peak = 605 nm p-type doping by sulfuric acid (H2SO4) -type doping by sodium (electron donor) Iodine (I2) = electron acceptor = > oxidizing agent... [Pg.195]

When exciting sodium electronically to the 3p and 4d levels, the reactive cross-section increases, the center-of-mass angular distribution widens, but the re-... [Pg.3025]

The electron released by sodium electron donor) is the electron received by chlorine... [Pg.84]

Oxidation of sodium happens when it loses electrons in the reaction, contributing to the ionization, and chlorine is reduced when it gains electrons in the reaction. As the transfer of the sodium electrons to the chlorine ion occurs, the ionic compound is formed. The positive (+) and negative (-) opposite charges attract and form an ionic bond. [Pg.181]

As you saw on the last page, a sodium atom can lose one electron, and a chlorine atom can gain one, to obtain full outer shells. So, when a sodium atom and a chlorine atom react together, the sodium atom loses its electron to the chlorine atom, and two ions are formed. Here, sodium electrons are shown as and chlorine electrons as x, but remember that all electrons are exactly the same ... [Pg.42]

Figure Cl. 1.2. (a) Mass spectmm of sodium clusters (Na ), N= 4-75. The inset corresponds to A = 75-100. Note tire more abundant clusters at A = 8, 20, 40, 58, and 92. (b) Calculated relative electronic stability, A(A + 1) - A(A0 versus N using tire spherical electron shell model. The closed shell orbitals are labelled, which correspond to tire more abundant clusters observed in tire mass spectmm. Knight W D, Clemenger K, de Heer W A, Saunders W A, Chou M Y and Cohen ML 1984 Phys. Rev. Lett. 52 2141, figure 1. Figure Cl. 1.2. (a) Mass spectmm of sodium clusters (Na ), N= 4-75. The inset corresponds to A = 75-100. Note tire more abundant clusters at A = 8, 20, 40, 58, and 92. (b) Calculated relative electronic stability, A(A + 1) - A(A0 versus N using tire spherical electron shell model. The closed shell orbitals are labelled, which correspond to tire more abundant clusters observed in tire mass spectmm. Knight W D, Clemenger K, de Heer W A, Saunders W A, Chou M Y and Cohen ML 1984 Phys. Rev. Lett. 52 2141, figure 1.
Knight W D, Clemenger K, de Heer W A, Saunders W A, Chou M Y and Cohen M L 1984 Electron shell structure and abundances of sodium clusters Phys. Rev. Lett. 52 2141... [Pg.2401]

The table contains vertical groups of elements each member of a group having the same number of electrons in the outermost quantum level. For example, the element immediately before each noble gas, with seven electrons in the outermost quantum level, is always a halogen. The element immediately following a noble gas, with one electron in a new quantum level, is an alkali metal (lithium, sodium, potassium, rubidium, caesium, francium). [Pg.12]

To date there is no evidence that sodium forms any chloride other than NaCl indeed the electronic theory of valency predicts that Na" and CU, with their noble gas configurations, are likely to be the most stable ionic species. However, since some noble gas atoms can lose electrons to form cations (p. 354) we cannot rely fully on this theory. We therefore need to examine the evidence provided by energetic data. Let us consider the formation of a number of possible ionic compounds and first, the formation of sodium dichloride , NaCl2. The energy diagram for the formation of this hypothetical compound follows the pattern of that for NaCl but an additional endothermic step is added for the second ionisation energy of sodium. The lattice energy is calculated on the assumption that the compound is ionic and that Na is comparable in size with Mg ". The data are summarised below (standard enthalpies in kJ) ... [Pg.75]

The alkali metals have the interesting property of dissolving in some non-aqueous solvents, notably liquid ammonia, to give clear coloured solutions which are excellent reducing agents and are often used as such in organic chemistry. Sodium (for example) forms an intensely blue solution in liquid ammonia and here the outer (3s) electron of each sodium atom is believed to become associated with the solvent ammonia in some way, i.e. the system is Na (solvent) + e" (sohem). [Pg.126]

Boron trioxide is not particularly soluble in water but it slowly dissolves to form both dioxo(HB02)(meta) and trioxo(H3B03) (ortho) boric acids. It is a dimorphous oxide and exists as either a glassy or a crystalline solid. Boron trioxide is an acidic oxide and combines with metal oxides and hydroxides to form borates, some of which have characteristic colours—a fact utilised in analysis as the "borax bead test , cf alumina p. 150. Boric acid. H3BO3. properly called trioxoboric acid, may be prepared by adding excess hydrochloric or sulphuric acid to a hot saturated solution of borax, sodium heptaoxotetraborate, Na2B407, when the only moderately soluble boric acid separates as white flaky crystals on cooling. Boric acid is a very weak monobasic acid it is, in fact, a Lewis acid since its acidity is due to an initial acceptance of a lone pair of electrons from water rather than direct proton donation as in the case of Lowry-Bronsted acids, i.e. [Pg.148]

Nitrogen oxide does show some ability to gain an electron and when passed into a solution of sodium in liquid ammonia, the... [Pg.230]

Evidence for the solvated electron e (aq) can be obtained reaction of sodium vapour with ice in the complete absence of air at 273 K gives a blue colour (cf. the reaction of sodium with liquid ammonia, p. 126). Magnesium, zinc and iron react with steam at elevated temperatures to yield hydrogen, and a few metals, in the presence of air, form a surface layer of oxide or hydroxide, for example iron, lead and aluminium. These reactions are more fully considered under the respective metals. Water is not easily oxidised but fluorine and chlorine are both capable of liberating oxygen ... [Pg.271]

The large sulfur atom is a preferred reaction site in synthetic intermediates to introduce chirality into a carbon compound. Thermal equilibrations of chiral sulfoxides are slow, and parbanions with lithium or sodium as counterions on a chiral carbon atom adjacent to a sulfoxide group maintain their chirality. The benzylic proton of chiral sulfoxides is removed stereoselectively by strong bases. The largest groups prefer the anti conformation, e.g. phenyl and oxygen in the first example, phenyl and rert-butyl in the second. Deprotonation occurs at the methylene group on the least hindered site adjacent to the unshared electron pair of the sulfur atom (R.R. Fraser, 1972 F. Montanari, 1975). [Pg.8]

If alkyl groups are attached to the ylide carbon atom, cis-olefins are formed at low temperatures with stereoselectivity up to 98Vo. Sodium bis(trimethylsilyl)amide is a recommended base for this purpose. Electron withdrawing groups at the ylide carbon atom give rise to trans-stereoselectivity. If the carbon atom is connected with a polyene, mixtures of cis- and rrans-alkenes are formed. The trans-olefin is also stereoseiectively produced when phosphonate diester a-carbanions are used, because the elimination of a phosphate ester anion is slow (W.S. Wadsworth, 1977). [Pg.30]

Terminal alkynes are only reduced in the presence of proton donors, e.g. ammonium sulfate, because the acetylide anion does not take up further electrons. If, however, an internal C—C triple bond is to be hydrogenated without any reduction of terminal, it is advisable to add sodium amide to the alkyne solution Hrst. On catalytic hydrogenation the less hindered triple bonds are reduced first (N.A. Dobson, 1955, 1961). [Pg.100]


See other pages where Sodium electrons is mentioned: [Pg.158]    [Pg.156]    [Pg.159]    [Pg.207]    [Pg.283]    [Pg.249]    [Pg.317]    [Pg.250]    [Pg.158]    [Pg.156]    [Pg.159]    [Pg.207]    [Pg.283]    [Pg.249]    [Pg.317]    [Pg.250]    [Pg.30]    [Pg.65]    [Pg.79]    [Pg.158]    [Pg.269]    [Pg.301]    [Pg.363]    [Pg.35]    [Pg.272]    [Pg.92]    [Pg.2218]    [Pg.2391]    [Pg.2760]    [Pg.308]    [Pg.8]    [Pg.8]    [Pg.28]    [Pg.58]    [Pg.59]    [Pg.231]    [Pg.257]    [Pg.390]    [Pg.126]   
See also in sourсe #XX -- [ Pg.220 ]

See also in sourсe #XX -- [ Pg.61 ]

See also in sourсe #XX -- [ Pg.8 ]




SEARCH



Sodium chloride electron density

Sodium clusters electronic properties

Sodium clusters electronic shell structures

Sodium condensed electron

Sodium condensed electron configuration

Sodium electron affinity

Sodium electron configuration

Sodium electron repulsions

Sodium electronic configuration

Sodium electronic devices

Sodium electronic structure

Sodium electronic transitions

Sodium ground state electronic configuration

Sodium ground-state electron configuration

Sodium naphthalide, electron-transfer reactions

Sodium starch glycolate scanning electron photomicrographs

Sodium valence electrons

© 2024 chempedia.info