Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sodium azide, reaction with alcohols

Sodium azide reacts with various epoxides at 25°-30°C at pH 6-7 to give azido alcohols [57-59]. The use of harsh conditions as earlier employed by Van der Werf et al. [59] (16-40 hr reflux in dioxane) led to the production of 1,3-diazidopropanol instead of l-azido-3-chloro-2-propanol when starting with epichlorohydrin. Several representative examples of the conditions and products of the reaction of azides with epoxides are shown in Table V. [Pg.147]

Dinitroaniline from 3 5-dinItrobenzoic acid. Place a solution of 50 g. of 3 5-dinitrobenzoic acid (Section IV, 168) in 90 ml. of 10 per cent, oleum and 20 ml. of concentrated sulphuric acid in a 1-litre three necked flask equipped with a reflux condenser, mechanical stirrer, adropping funnel, and thermometer (FUME CUPBOARD ). Add 100 ml. of clJoroform and raise the temperature to 45°. Stir rapidly and add 17 -5g. of sodium azide in small portions whilst maintaining the temperature at 35-45°. The reaction is accompanied hy foaming, which usually commences after about 3 g. of sodium azide has been introduced. After all the sodium azide has been added raise the temperature so that the chloroform refluxes vigorously and maintain this temperature for 3 hours. Then cool the reaction mixture, pour it cautiously on to 500 g. of crushed ice, and dilute with 3 litres of water. After 1 hour, separate the yellow solid by filtration at the pump, wash well with water and dry at 100°. The yield of 3 5-dinitroaniline, m.p. 162-163°, is 39 g. The m.p. is unaffected by recrystallisation from dilute alcohol. [Pg.919]

A mixture of the epoxide ca. 5 mmol), sodium azide (6 g, activated by the method of Smith) and 0.25 ml of concentrated sulfuric acid in 70 ml of dimethyl sulfoxide is heated in a flask fitted with a reflux condenser and a drierite tube on a steam bath for 30-40 hr. (Caution carry out reaction in a hood.) The dark reaction mixture is poured into 500 ml of ice water and the product may be filtered, if solid, and washed well with water or extracted with ether and washed with sodium bicarbonate and the water. The crude azido alcohols are usually recrystallized from methanol. [Pg.35]

The Cunius degradation of acyl azides prepared either by treatment of acyl halides with sodium azide or trimethylsilyl azide [47] or by treatment of acyl hydrazides with nitrous acid [f J yields pnmarily alkyl isocyanates, which can be isolated when the reaction is earned out in aptotic solvents If alcohols are used as solvents, urethanes are formed Hydrolysis of the isocyanates and the urethanes yields primary amines. [Pg.916]

According to Hofman-Bang carbon sulfide selenide, CSSe, catalyzes the iodine-azide reaction but is at the same time decomposed with the formation of selenium. Experiments, in both this laboratory and that of Hofman-Bang have shown that carbon diselenide reacts with sodium azide (in aqueous or aqueous-alcoholic solution) with immediate precipitation of red selenium even at — 20° C. //a selena-triazole is formed in this reaction it must be extremely unstable. [Pg.275]

Butyl alcohol in synthesis of phenyl 1-butyl ether, 46, 89 1-Butyl azidoacetate, 46, 47 hydrogenation of, 46, 47 1-Butyl chloroacetate, reaction with sodium azide, 46, 47 lre l-4-i-BUTYLCYCLOHEXANOL, 47,16 4-(-Butylcyclohexanonc, reduction with lithium aluminum hydride and aluminum chloride, 47, 17 1-Butyl hypochlorite, reaction with cy-clohexylamine, 46,17 l-Butylthiourea, 46, 72... [Pg.123]

With a common intermediate from the Medicinal Chemistry synthesis now in hand in enantiomerically upgraded form, optimization of the conversion to the amine was addressed, with particular emphasis on safety evaluation of the azide displacement step (Scheme 9.7). Hence, alcohol 6 was reacted with methanesul-fonyl chloride in the presence of triethylamine to afford a 95% yield of the desired mesylate as an oil. Displacement of the mesylate using sodium azide in DMF afforded azide 7 in around 85% assay yield. However, a major by-product of the reaction was found to be alkene 17, formed from an elimination pathway with concomitant formation of the hazardous hydrazoic acid. To evaluate this potential safety hazard for process scale-up, online FTIR was used to monitor the presence of hydrazoic acid in the head-space, confirming that this was indeed formed during the reaction [7]. It was also observed that the amount of hydrazoic acid in the headspace could be completely suppressed by the addition of an organic base such as diisopropylethylamine to the reaction, with the use of inorganic bases such as... [Pg.247]

The stereoselective total synthesis of (+)-epiquinamide 301 has been achieved starting from the amino acid L-allysine ethylene acetal, which was converted into piperidine 298 by standard protocols. Allylation of 297 via an. V-acyliminium ion gave 298, which underwent RCM to provide 299 and the quinolizidine 300, with the wrong stereochemistry at the C-l stereocenter. This was corrected by mesylation of the alcohol, followed by Sn2 reaction with sodium azide to give 301, which, upon saponification of the methyl ester and decarboxylation through the Barton procedure followed by reduction and N-acylation, gave the desired natural product (Scheme 66) <20050L4005>. [Pg.44]

A" 0-Butenolide, 46, 22 /-Butyl alcohol, in synthesis of phenyl /-butyl ether, 45, 89 reaction with sodium cyanate and trifluoroacetic acid, 48, 32 /-Butyl azidoacctatc, 46, 47 hydrogenation of, 45, 47 /-Butyl carbamate, 48,32 /-Butyl chloroacetate, reaction with sodium azide, 45, 47 /ra S-4-/-BuTYI,CYCLOHEXANOL, 47,16... [Pg.70]

Schkeryantz and Pearson (59) reported a total synthesis of ( )-crinane (298) using an intramolecular azide-alkene cycloaddition (Scheme 9.59). The allylic acetate 294 was first subjected to an Ireland-Claisen rearrangement followed by reduction to give alcohol 295, which was then converted into the azide 296 using Mitsunobu conditions. Intramolecular cycloaddition of the azide 296 in refluxing toluene followed by extrusion of nitrogen gave the imine 297 in quantitative yield. On reduction with sodium cyanoborohydride and subsequent reaction with... [Pg.660]

The synthesis of the amino alcohol (5S,6S)-6-amino-5-decanol begins with reaction of the 1-chloropentylboronic ester (Section 1.1.2.1.3.1.) with sodium azide under phase-transfer conditions to form the a-azido boronic ester, which yields the a-chloro- -azidoalkyl boronic ester (1) [yield 92 % 95 % de] with (dichloromethyl)lithium under the usual conditions. The reaction of 1 with butylmagnesium chloride is unusual in that it requires zinc chloride in order to accomplish the replacement of chlorine by butyl to form /J-azidoalkyl boronic ester 2 without boron-azide /1-elimination. Standard peroxidic deboronation and reduction of the azide complete the synthesis15. [Pg.1096]

Curtius and Rissom [41] prepared cupric azide by the action of an aqueous solution of sodium azide on an aqueous solution of cupric sulphate, obtaining the salt in a hydrated form. The anhydrous salt was prepared by Straumanis and Ciru-lis [125] in the form of dark brown, reddish sediment by reaction of lithium azide on cupric nitrate in an alcohol solution. Another method described by Curtius consists of reacting hydrazoic acid with metallic copper in an aqueous medium. [Pg.185]

As a starting material for the preparation of sym-trinitrotriazidobenzene, 1,3,5-trichlorobenzene is used. It is obtained by the chlorination of aniline and the removal of the amino group. Nitration to the trinitro derivative is described in Vol. I. The final reaction is simple powdered 1,3,5,-trichloro-2,4,6-trinitrobenzene is added to an aqueous alcohol solution of sodium azide. The precipitated product is washed with alcohol and water and dried at a moderate temperature. The product so obtained may be purified by crystallization from chloroform. [Pg.194]

G. Miscettaneous Nwdeopkilic Additions (1) Azide ion. The ready cleavage of ethylene oxide rings by N. ion is in acoordanoe with its recognized nucleophilic character. Alllums-Ii so far limited to three,6 8-127 -1778 publications devoted to this reaction have explored the behavior of a wide assortment of epoxides. Jt. is customary to characterize 0-azido alcohol obtained on treatmml of epoxides with aqueous sodium azide by reduction to /1-atnirm aa-o-hok.iwo. ins aa shown in Eq. (896). [Pg.220]

The reaction is complete when no more ammonia is evolved. The product, which consists of an equimolecular mixture of sodium hydroxide and sodium azide, may be taken up in water and neutralized carefully witli nitric acid, and the resulting solution may be used directly for the preparation of lead azide, or the product may be fractionally crystallized from water for the production of sodium azide. The same material may be procured by washing the product with warm alcohol which dissolves away the sodium hydroxide. [Pg.429]

The triethylamine salt of 2,2-dimethyl-3-(3,4-methylenedioxyphenyl)-propionic acid (5.4 g amine, 11.4 g acid) was dissolved in 10 mL 11,0 and diluted with sufficient acetone to maintain a clear solution at ice-bath temperature. A solution of 6.4 g ethyl chloroformate in 40 mL acetone was added to the 0 °C solution over the course of 30 min, followed by the addition of a solution of 4.1 g sodium azide in 30 mL H20. Stirring was continued for 45 min while the reaction returned to room temperature. The aqueous phase was extracted with 100 mL toluene which was washed once with H20 and then dried with anhy drou s Mg S04. Thi s org ani c sol uti on of the azide was heated on a steam bath until nitrogen evolution had ceased, which required about 30 min. The solvent was removed under vacuum and the residue was dissolved in 30 mL benzyl alcohol. This solution was heated on the steam bath overnight. Removal of the excess benzyl alcohol under vacuum left a residue 13.5 g of l-(N-(benzyloxycarbonyl)amino)-1,1 -dimethyl-2-(3,4-methylenedioxyphenyl)ethane as an amber oil. The dimethyl group showed, in the NMR, a sharp singlet at 1.30 ppm in CDCH,. Anal. (C19H2lN04) C,H. This carbamate was reduced to the primary amine (below) or to the methylamine (see under MDMP). [Pg.384]


See other pages where Sodium azide, reaction with alcohols is mentioned: [Pg.349]    [Pg.436]    [Pg.345]    [Pg.468]    [Pg.564]    [Pg.76]    [Pg.388]    [Pg.400]    [Pg.978]    [Pg.84]    [Pg.147]    [Pg.162]    [Pg.94]    [Pg.231]    [Pg.173]    [Pg.29]    [Pg.15]    [Pg.106]    [Pg.243]    [Pg.265]    [Pg.218]    [Pg.58]    [Pg.660]    [Pg.303]    [Pg.337]    [Pg.346]   
See also in sourсe #XX -- [ Pg.214 , Pg.219 ]




SEARCH



Azidation reaction

Azides, reactions

Azides, sodium with

Reaction with alcohols

Reaction with azide

Reaction with sodium azide

Sodium alcohol

Sodium alcoholate

Sodium azide

Sodium azide, reaction with azides

Sodium reaction with

Sodium with alcohols

With Azides

© 2024 chempedia.info