Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sodium absorption ratio

Finne U, Salivirta J, Urtti A. Sodium acetate improves the ocular/ systemic absorption ratio of timolol applied ocularly in monoisopropyl PVM-MA matrices. Int J Pharm 1991 75 Rl—R4. [Pg.655]

The complexation of Pu(IV) with carbonate ions is investigated by solubility measurements of 238Pu02 in neutral to alkaline solutions containing sodium carbonate and bicarbonate. The total concentration of carbonate ions and pH are varied at the constant ionic strength (I = 1.0), in which the initial pH values are adjusted by altering the ratio of carbonate to bicarbonate ions. The oxidation state of dissolved species in equilibrium solutions are determined by absorption spectrophotometry and differential pulse polarography. The most stable oxidation state of Pu in carbonate solutions is found to be Pu(IV), which is present as hydroxocarbonate or carbonate species. The formation constants of these complexes are calculated on the basis of solubility data which are determined to be a function of two variable parameters the carbonate concentration and pH. The hydrolysis reactions of Pu(IV) in the present experimental system assessed by using the literature data are taken into account for calculation of the carbonate complexation. [Pg.315]

Samples are hydrolyzed with hydrochloric acid and stannous chloride solution at elevated temperature, and the evolved carbon disulfide is drawn with an air steam through two gas washing tubes in series containing lead acetate and sodium hydroxide solutions and an absorption tube containing an ethanolic solution of cupric acetate and diethanolamine. Lead acetate and sodium hydroxide remove hydrogen sulfide and other impurities. In the absorption tube, the carbon disulfide forms two cupric complexes of Af,Af-bis(2-hydroxyethyl)dithiocarbamic acid with molecular ratios Cu CS2 of 1 1 and 1 2. These complexes are measured simultaneously by spectrophotometry at 453 nm. [Pg.1092]

The ratio, Nj/N0, can therefore be calculated. For the relatively easily excited alkali metal sodium, it is 9.9 x 10 6 at 2000 °K and 5.9 x 10 4 at 3000 °K this latter temperature is about the highest commonly obtained with flames used for atomic absorption or emission work. Hence, only about 1(T3 % of the sodium atoms are excited at 2000 ° and 6 x 1(F2 % at 3000°. For an element such as zinc,Nf/N0 is 5.4 x 10"10 at 3000 and so only 5 x 10"8% is excited. In spite of the small fraction excited, good sensitivities can be obtained for many elements by flame photometry if a high temperature flame is used, because the difference between zero and a small but finite number is measured. For example, seventy elements can be determined by flame photometry using the nitrous oxide-acetylene flame 1H. [Pg.81]

Apparent absorption (intake minus fecal excretion) of calcium decreased when the diet contained muffins with added sodium phytate to increase the molar ratio of phytate/calcium from 0.04 to 0.14 and 0.24. One-half of the men excreted more calcium in feces than was consumed when the high phytate diet was consumed. People consuming diets with molar ratios of phytate/calcium exceeding 0.2 may be at risk of calcium deficiency because of low bioavailability of dietary calcium unless physiological adjustments can be accomplished that maintain homeostasis. [Pg.65]

The brown or whole meal bread diets employed by previous investigators were often variable in calcium and phytate intakes, not only between individuals, but by the same individual subjected to different diet treatments. Nevertheless an estimate of the molar ratio of phytate/calcium in the brown or whole meal bread diets used by McCance and Widdowson (UO), Walker et al. (11) and Reinhold et al. (2, 12) is 0.25 or greater. These investigators observed either negative or less positive calcium balance and apparent absorption when the brown bread diets were consumed compared to white bread diets with phytate/calcium molar ratios less than 0.05. Our results support their findings. Reinhold et al. (2) and McCance and Widdowson (33) used sodium phytate in some studies as well as whole wheat bread and observed similar results. [Pg.72]

In a more simple and cheap way, silver clusters can be prepared in aqueous solutions of commercially available polyelectrolytes, such as poly(methacrylic acid) (PM A A) by photo activation using visible light [20] or UV light [29]. Ras et al. found that photoactivation with visible light results in fluorescent silver cluster solutions without any noticeable silver nanoparticle impurities, as seen in electron microscopy and from the absence of plasmon absorption bands near 400 nm (F = 5-6%). It was seen that using PMAA in its acidic form, different ratios Ag+ MAA (0.15 1-3 1) lead to different emission bands, as discussed in the next section (Fig. 12) [20]. When solutions of PMAA in its sodium form and silver salt were reduced with UV light (365 nm, 8 W), silver nanoclusters were obtained with emission band centered at 620 nm and [Pg.322]

Grayish-white metal hody-centered cubic crystalline structure density 19.3 g/cm3 melts at 3,422°C vaporizes at 5,555°C vapor pressure 1 torr at 3,990°C electrical resistivity 5.5 microhm-cm at 20°C modulus of elasticity about 50 to 57 x lO psi (single crystal) Poisson s ratio 0.17 magnetic sus-ceptibilty +59 x 10-6 thermal neutron absorption cross section 19.2 + 1.0 barns (2,200m/sec) velocity of sound, about 13,000 ft/sec insoluble in water practically insoluble in most acids and alkabes dissolves slowly in hot concentrated nitric acid dissolves in saturated aqueous solution of sodium chlorate and basic solution of potassium ferricyanide also solubibzed by fusion with sodium hydroxide or sodium carbonate in the presence of potassium nitrate followed by treatment with water... [Pg.950]


See other pages where Sodium absorption ratio is mentioned: [Pg.205]    [Pg.205]    [Pg.242]    [Pg.124]    [Pg.183]    [Pg.124]    [Pg.171]    [Pg.131]    [Pg.321]    [Pg.462]    [Pg.902]    [Pg.150]    [Pg.327]    [Pg.12]    [Pg.117]    [Pg.182]    [Pg.824]    [Pg.84]    [Pg.194]    [Pg.139]    [Pg.61]    [Pg.419]    [Pg.168]    [Pg.902]    [Pg.769]    [Pg.190]    [Pg.146]    [Pg.176]    [Pg.401]    [Pg.50]    [Pg.142]    [Pg.579]    [Pg.507]    [Pg.72]    [Pg.656]    [Pg.126]    [Pg.55]    [Pg.482]    [Pg.259]    [Pg.217]    [Pg.100]    [Pg.499]   
See also in sourсe #XX -- [ Pg.188 ]




SEARCH



Absorption ratio

Sodium absorption

Sodium ratio

© 2024 chempedia.info