Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Small molecules, construction

Synthesis of small molecules - Construction of novel building blocks... [Pg.12]

An alternative and much more flexible approach is represented hy the STAR file format [L48, 149, which can be used for building self-describing data files. Additionally, special dictionaries can be constructed, which specify more precisely the contents of the eorresponding data files. The two most widely used such dictionaries (and file formats) arc the CIF (Crystallographic Information File) file format [150] - the International Union of Crystallography s standard for representation of small molecules - and mmCIF [151], which is intended as a replacement for the PDB format for the representation of macromolecular structures,... [Pg.112]

Z-matrix was that it mirrors the way chemists think. Molecular construction using the Z-matrix is not particularly difficult for a small molecule, and symmetry can be readily imposed, as in my ethene example above. [Pg.244]

Table X gives an idea of the strength of the various expansion methods, and it shows that, by using the principal term only, one can hardly expect to reach even the above-mentioned chemical margin, even if the wave function W gO(D) is actually very close in the helium case. This means that one has to rely on expansions in complete sets, and the construction of the modern electronic computers has fortunately greatly facilitated the numerical solution of secular equations of high order and the calculation of the matrix elements involved. For atoms, the development will probably go very fast, but, for small molecules one has first to program the conventional Hartree-Fock scheme in a fully self-consistent way for the computers, before the next step can be taken. For large molecules and crystals, the entire situation is much more complicated, and it will hence probably take a rather long time before one can hope to get a detailed understanding of the correlation phenomena in these systems. Table X gives an idea of the strength of the various expansion methods, and it shows that, by using the principal term only, one can hardly expect to reach even the above-mentioned chemical margin, even if the wave function W gO(D) is actually very close in the helium case. This means that one has to rely on expansions in complete sets, and the construction of the modern electronic computers has fortunately greatly facilitated the numerical solution of secular equations of high order and the calculation of the matrix elements involved. For atoms, the development will probably go very fast, but, for small molecules one has first to program the conventional Hartree-Fock scheme in a fully self-consistent way for the computers, before the next step can be taken. For large molecules and crystals, the entire situation is much more complicated, and it will hence probably take a rather long time before one can hope to get a detailed understanding of the correlation phenomena in these systems.
The Diels-Alder cycloaddition is the best-known organic reaction that is widely used to construct, in a regio- and stereo-controlled way, a six-membered ring with up to four stereogenic centers. With the potential of forming carbon-carbon, carbon-heteroatom and heteroatom-heteroatom bonds, the reaction is a versatile synthetic tool for constructing simple and complex molecules [1], Scheme 1.1 illustrates two examples the synthesis of a small molecule such as the tricyclic compound 1 by intermolecular Diels-Alder reaction [2] and the construction of a complex compound, like 2, which is the key intermediate in the synthesis of (-)chlorothricolide 3, by a combination of an intermolecular and an intramolecular Diels-Alder cycloaddition [3]. [Pg.1]

The patterned amine materials have been used to construct CGC-inspired sites that were evaluated in the catalytic polymerization of ethylene after activation with MAO. The complexes assembled on a porous silica surface using this methodology are more active than previously reported materials prepared on densely-loaded amine surfaces. This increased activity further suggests the isolated, unique nature of the metal centers. Work is continuing in our laboratory to further characterize the nature of the active sites, as well as to obtain more detailed kinetic data on the catalysts. The patterning methodology is also being applied to the creation of immobilized catalysts for small molecule reactions, such as Heck and Suzuki catalysis. [Pg.277]

Szostak et al. worked on the basis of a simple cellular system which can replicate itself autonomously and which is subject to Darwinian evolution. This simple protocell consists of an RNA replicase, which replicates in a self-replicating vesicle. If this system can take up small molecules from its environment (a type of feeding ), i.e., precursors which are required for membrane construction and RNA synthesis, the protocells will grow and divide. The result should be the formation of improved replicases. Improved chances of survival are only likely if a sequence, coded by RNA, leads to better growth or replication of membrane components, e.g., by means of a ribozyme which catalyses the synthesis of amphiphilic lipids (Figs. 10.8 and 10.9). We can expect further important advances in the near future from this combination ( RNA + lipid world ). [Pg.271]

When compared to fluorescent proteins, fluorophores and quenchers of fluorescence (short quenchers) are small molecules with sizes varying from 1 to 10 A. They are the main building blocks for constructing small molecule FRET probes. As molecular entities, they might influence the performance of the probe to a great extent. Their fluorescent properties will determine the sensitivity and dynamic range of the sensor. The success of the probe for a specific application will depend on the selection of the right fluorophores... [Pg.237]

One of the important purposes for the study of the direct electron transfer of protein is to construct the mediator-free protein-based biosensors. These biosensors can determine many small molecules like H202, 02, NO, nitrite, small organic peroxide, and so on. They also can determine glucose, alcohol, and amino acids by... [Pg.572]

The basic formalism of the X-dynamics method has taken various forms in its application to problems of interest. In an early prototype calculation to assess umbrella sampling in chemical coordinates, the X-dynamics method was used to evaluate the relative free energy of hydration for a set of small molecules which included both nonpolar (C2H6,) and polar (CH3OH, CH3SH, and CH3CN) solutes.1 By assigning a separate X variable to the Lennard-Jones and Coulomb interactions, a linear partition of the potential part of the hybrid Hamiltonian was constructed... [Pg.216]

The aim of this chapter is to give the reader a broad overview of the field of vapor-deposited small-molecule OLEDs. It is beyond the scope of this chapter to cover every aspect of these devices, however key references are given throughout the text for those readers who are interested in delving more deeply into this topic. Section 7.2 describes the key elements of a typical OLED. Alternative device architectures are also briefly described. Section 7.3 describes the typical fabrication methods and materials used in the construction of vapor-deposited OLEDs. Section 7.4 describes the physics of an OLED in addition to the improvement of the performance over time made through advances in device architectures and materials. Section 7.5 discusses OLED displays and Section 7.6 looks at the future exciting possibilities for the field of vapor-deposited organic devices. [Pg.528]


See other pages where Small molecules, construction is mentioned: [Pg.89]    [Pg.1]    [Pg.302]    [Pg.221]    [Pg.2781]    [Pg.89]    [Pg.1]    [Pg.302]    [Pg.221]    [Pg.2781]    [Pg.529]    [Pg.361]    [Pg.360]    [Pg.109]    [Pg.41]    [Pg.140]    [Pg.738]    [Pg.57]    [Pg.83]    [Pg.221]    [Pg.182]    [Pg.204]    [Pg.211]    [Pg.300]    [Pg.134]    [Pg.66]    [Pg.625]    [Pg.84]    [Pg.156]    [Pg.170]    [Pg.175]    [Pg.275]    [Pg.127]    [Pg.42]    [Pg.142]    [Pg.168]    [Pg.290]    [Pg.220]    [Pg.222]    [Pg.282]    [Pg.5]    [Pg.167]   
See also in sourсe #XX -- [ Pg.6 ]




SEARCH



© 2024 chempedia.info