Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sluggish

The main use of organocadmium compounds is for the preparation of ketones and keto-esters, and their special merit lies in the fact that they react vigorously with acid chlorides of all types but add sluggishly or not at all to multiple bonds (compare addition of Grignard reagents to carbonyl groups). Some t3rpical syntheses are ... [Pg.936]

Gobalt is a brittle, hard metal, resembling iron and nickel in appearance. It has a metallic permeability of about two thirds that of iron. Gobalt tends to exist as a mixture of two allotropes over a wide temperature range. The transformation is sluggish and accounts in part for the wide variation in reported data on physical properties of cobalt. [Pg.83]

Lithium containing 0.5-1% of sodium should be used the very pure metal reacts sluggishly and gives lower yields. [Pg.12]

The formation of 2.6-octadienol (27) by the reaction of 1,3-butadiene with water has attracted attention as a novel method for the commercial production of n-octanol, which has a considerable market. However, the reaction of water under the usual conditions is very sluggish. The addition of CO2 facilitates the telomerizdtion of water and 2,6-octadienol (27) is obtained as a major pro-duct[31]. In the absence of CO2, only 1,3,7-octatriene (7) is formed. Probably octadienyl carbonate is formed, which is easily hydrolyzed to give 27. A com-... [Pg.427]

The kinetic nature of the glass transition should be clear from the last chapter, where we first identified this transition by a change in the mechanical properties of a sample in very rapid deformations. In that chapter we concluded that molecular motion could simply not keep up with these high-frequency deformations. The complementarity between time and temperature enters the picture in this way. At lower temperatures the motion of molecules becomes more sluggish and equivalent effects on mechanical properties are produced by cooling as by frequency variations. We shall return to an examination of this time-temperature equivalency in Sec. 4.10. First, however, it will be profitable to consider the possibility of a thermodynamic description of the transition which occurs at Tg. [Pg.244]

Sulfur tetrafluoride [7783-60-0] SF, replaces halogen in haloalkanes, haloalkenes, and aryl chlorides, but is only effective (even at elevated temperatures) in the presence of a Lewis acid catalyst. The reagent is most often used in the replacement of carbonyl oxygen with fluorine (15,16). Aldehydes and ketones react readily, particularly if no alpha-hydrogen atoms are present (eg, benzal fluoride [455-31-2] from benzaldehyde), but acids, esters, acid chlorides, and anhydrides are very sluggish. However, these reactions can be catalyzed by Lewis acids (HP, BF, etc). [Pg.268]

Diborane [19287-45-7] the first hydroborating agent studied, reacts sluggishly with olefins in the gas phase (14,15). In the presence of weak Lewis bases, eg, ethers and sulfides, it undergoes rapid reaction at room temperature or even below 0°C (16—18). The catalytic effect of these compounds on the hydroboration reaction is attributed to the formation of monomeric borane complexes from the borane dimer, eg, borane-tetrahydrofuran [14044-65-6] (1) or borane—dimethyl sulfide [13292-87-0] (2) (19—21). Stronger complexes formed by amines react with olefins at elevated temperatures (22—24). [Pg.308]

The products are Hquids, soluble in various solvents and stable over prolonged periods. Monochloroborane is an equiUbtium mixture containing small amounts of borane and dichloroborane complexes with dimethyl sulfide (81). Monobromoborane—dimethyl sulfide complex shows high purity (82,83). Solutions of monochloroborane in tetrahydrofuran and diethyl ether can also be prepared. Strong complexation renders hydroboration with monochloroborane in tetrahydrofuran sluggish and inconvenient. Monochloroborane solutions in less complexing diethyl ether, an equiUbtium with small amounts of borane and dichloroborane, show excellent reactivity (88,89). Monochloroborane—diethyl etherate [36594-41-9] (10) may be represented as H2BCI O... [Pg.310]

Its reactions with olefins, governed by steric rather than electronic factors, are very sluggish. Even simple 1-alkenes require 8 h at 25°C for complete reaction. In contrast, alkynes are hydroborated with great ease to alkenylboranes, high steric requirements of the reagent preventing dihydroboration (117). [Pg.311]

Mercuration. Mercury(II) salts react with alkyl-, alkenyl-, and arylboranes to yield organomercurials, which are usehil synthetic intermediates (263). For example, dialkyhnercury and alkyhnercury acetates can be prepared from primary trialkylboranes by treatment with mercury(II) chloride in the presence of sodium hydroxide or with mercury(II) acetate in tetrahydrofuran (3,264). Mercuration of 3 -alkylboranes is sluggish and requires prolonged heating. Alkenyl groups are transferred from boron to mercury with retention of configuration (243,265). [Pg.315]

Fouling of the pH sensor may occur in solutions containing surface-active constituents that coat the electrode surface and may result in sluggish response and drift of the pH reading. Prolonged measurements in blood, sludges, and various industrial process materials and wastes can cause such drift. Therefore, it is necessary to clean the membrane mechanically or chemically at intervals that are consistent with the magnitude of the effect and the precision of the results requited. [Pg.466]

Selenides. Selenium forms compounds with most elements. Biaary compounds of selenium with 58 metals and 8 nonmetals, and alloys with three other elements have been described (55). Most of the selenides can be prepared by a direct reaction. This reaction varies from very vigorous with alkah metals to sluggish and requiring high temperature with hydrogen. [Pg.332]

Fig. 3. The main crystallographic forms of siUca stable at atmospheric pressure. The vertical directions represent the facile, displacive polymorphic transitions, whereas the horizontal directions represent the sluggish reconstmctive transitions (44). Fig. 3. The main crystallographic forms of siUca stable at atmospheric pressure. The vertical directions represent the facile, displacive polymorphic transitions, whereas the horizontal directions represent the sluggish reconstmctive transitions (44).
Tridymite. Tridymite is reported to be the siUca form stable from 870—1470°C at atmospheric pressure (44). Owing to the sluggishness of the reconstmctive tridymite—quart2 conversion, which requites minerali2ers such as sodium tungstate, alkah metal oxide, or the action of water under pressure, tridymite may persist as a metastable phase below 870°C. It occurs in volcanic rocks and stony meteorites. [Pg.475]

Hydrosdylation can also be initiated by a free-radical mechanism (227—229). A photochemical route uses photosensitizers such as peresters to generate radicals in the system. Unfortunately, the reaction is quite sluggish. In several apphcations, radiation is used in combination with platinum and an inhibitor to cure via hydro sdylation (230—232). The inhibitor is either destroyed or deactivated by uv radiation. [Pg.49]

The important (3-stabilizing alloying elements are the bcc elements vanadium, molybdenum, tantalum, and niobium of the P-isomorphous type and manganese, iron, chromium, cobalt, nickel, copper, and siUcon of the P-eutectoid type. The P eutectoid elements, arranged in order of increasing tendency to form compounds, are shown in Table 7. The elements copper, siUcon, nickel, and cobalt are termed active eutectoid formers because of a rapid decomposition of P to a and a compound. The other elements in Table 7 are sluggish in their eutectoid reactions and thus it is possible to avoid compound formation by careful control of heat treatment and composition. The relative P-stabilizing effects of these elements can be expressed in the form of a molybdenum equivalency. Mo (29) ... [Pg.101]

Therefore, 12.37 kg saline water are needed in this case to produce 1 kg distillate. This high dow rate incuts corresponding pumping equipment and energy expenses, sluggish system dynamics, and, because the stream level depth is limited to about 0.3—0.5 m for best evaporation rates, also requites large evaporator vessels with their associated expense. [Pg.242]

The rate at which the corrosion of the 2iac proceeds depends on the rates of the two half reactions (eqs. 8 and 12). Equation 8, a necessary part of the desired battery reaction, fortunately represents a reaction that proceeds rather rapidly, whereas the reaction represented by equation 12 is slow. le, the generation of hydrogen on pure 2iac is a sluggish reaction and thus limits the overall corrosion reaction rate. [Pg.524]

This precipitation can be sluggish and in some cases the 2incate concentration can increase to three or four times the equiUbrium solubiUty value, after which precipitation of 2inc hydroxide [20427-58-1] can occur. [Pg.525]

The dienoplules for reaction with butadiene can be alkenes, allenes, and alkynes. Simple alkenes like ethylene are poor dienoplules resulting in sluggish reactions. Substituted olefins, X—C=C—X, are more reactive when X and/or X are C=C, Ar, COOR, COOH, COH, COR, COCl, CN,... [Pg.343]

Oil well cements are manufactured similarly to ordinary Portland cements except that the goal is usually sluggish reactivity. Eor this reason, levels of C A, C S, and alkafl sulfates are kept low. Hydration-retarding additives are also employed. [Pg.294]

Addition of alcohols and phenols ia the presence of anhydrous hydrogen chloride gives 0-substituted pseudourea salts (17). The reaction is sluggish except with the lower alcohols, and long reaction time and temperatures up to 100°C are requited to obtain good yields. [Pg.368]

Sluggish chain mobility and low free volume result in low diffusion constants, and when combined with low solubiUty of gases lead to very low permeabihty. The diffiisivity of several gases in butyl mbber and natural mbber are shown in Table 3 (82) (see Barrier polymers). [Pg.485]


See other pages where Sluggish is mentioned: [Pg.67]    [Pg.1936]    [Pg.151]    [Pg.346]    [Pg.335]    [Pg.8]    [Pg.1166]    [Pg.65]    [Pg.105]    [Pg.178]    [Pg.311]    [Pg.208]    [Pg.336]    [Pg.325]    [Pg.119]    [Pg.176]    [Pg.323]    [Pg.466]    [Pg.181]    [Pg.444]    [Pg.236]    [Pg.254]    [Pg.74]    [Pg.127]    [Pg.38]    [Pg.389]    [Pg.427]    [Pg.255]   
See also in sourсe #XX -- [ Pg.139 ]




SEARCH



Alcoholic fermentation sluggish/stuck fermentations

Fermentation sluggishness

Impact-sluggish act

Response sluggish

Sluggish depression

Sluggish depression symptoms

Sluggish dynamical behavior

Sluggish/stuck fermentations

© 2024 chempedia.info