Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Single-electron transfer SET

The reactivities of the substrate and the nucleophilic reagent change vyhen fluorine atoms are introduced into their structures This perturbation becomes more impor tant when the number of atoms of this element increases A striking example is the reactivity of alkyl halides S l and mechanisms operate when few fluorine atoms are incorporated in the aliphatic chain, but perfluoroalkyl halides are usually resistant to these classical processes However, formal substitution at carbon can arise from other mecharasms For example nucleophilic attack at chlorine, bromine, or iodine (halogenophilic reaction, occurring either by a direct electron-pair transfer or by two successive one-electron transfers) gives carbanions These intermediates can then decompose to carbenes or olefins, which react further (see equations 15 and 47) Single-electron transfer (SET) from the nucleophile to the halide can produce intermediate radicals that react by an SrnI process (see equation 57) When these chain mechanisms can occur, they allow reactions that were previously unknown Perfluoroalkylation, which used to be very rare, can now be accomplished by new methods (see for example equations 48-56, 65-70, 79, 107-108, 110, 113-135, 138-141, and 145-146)... [Pg.446]

C-Methylation products, o-nitrotoluene and p-nitrotoluene, were obtained when nitrobenzene was treated with dimethylsulfoxonium methylide (I)." The ratio for the ortho and para-methylation products was about 10-15 1 for the aromatic nucleophilic substitution reaction. The reaction appeared to proceed via the single-electron transfer (SET) mechanism according to ESR studies. [Pg.10]

Addilion of benzophenone to the lithium derivative 2 (M = Li) proceeds in a stereorandom fashion, which is attributed to the participation of radicals, detected by ESR and produced by single-electron transfer (SET)12. The magnesium derivative reacts with 90% diastereoselectivity with no SET being recorded. Benzaldehyde as the carbonyl compound affords the [1/, 1(1S)]-and [15,1(1/ )]-diastereomers in a 70 30 mixture, with 40% de12. Enhanced selectivities are achieved with camphor-derived 2-(2-oxazolyl)isoquinolines12a. [Pg.202]

B. Reductions by Hydrides, Metals and Single-Electron-Transfer (SET)... [Pg.925]

This first single electron transfer (SET) is followed, due to the chemical and electrochemical instability of R by at least one of the following reactions ... [Pg.1015]

It might be mentioned that matters are much simpler for organometallic compounds with less-polar bonds. Thus Et2Hg and EtHgCl are both definite compounds, the former is a liquid and the latter is a solid. Organocalcium reagents are also known, and they are formed from alkyl halides via a single electron transfer (SET) mechanism with free-radical intermediates. "... [Pg.237]

The electrochemical generation and reactivity of phosphoniumyl and related charged radicals have been recently reviewed by Kargin and Bunikova [8]. In 1995, Yasui reviewed the reactivity of trivalent phosphorus compounds in single electron transfer (SET) processes [41] and, in 1990, the EPR features and reactivity of phosphoniumyl radicals were reviewed by Tordo [42]. [Pg.52]

Although single-electron-transfer (SET) processes would be expected to be important in reactions that use metals as reagents, this type of process has also been recognized in the reduction of carbonyl groups that involve 1,4-dihydronicotinamide derivatives . Recent work by Oae and coworkers" has shown that an SET process is operative in the reduction of dibenzothiophene S-oxide by l-benzyl-l,4-dihydronicotinamide when the reaction is catalyzed by metalloporphins. The reaction is outlined in equation (18), but the study gave results of much more mechanistic than synthetic value. This type of study is relevant to understanding biochemical mechanisms since it is known that methionine sulphoxide is reduced to methionine by NADPH when the reaction is catalyzed by an enzyme isolated from certain yeasts . [Pg.933]

However, there is evidence that reactions of aluminium hydride produced in situ involve single-electron-transfer (SET) processesThe reactions described by Trost and Ghadiri have most likely not been studied in sufficient detail to permit an adequate description of the reaction mechanism to be given at this stage. It is, however, quite likely that the Grignard reactions catalyzed by copper(II) and nickel(II) complexes , as developed by julia - and by Masaki , do involve SET processes, although, if this is so, the preservation of stereochemistry in some of the examples described by these workers is quite remarkable. (In this context, the reader s attention is drawn to Reference 196, end of this section.)... [Pg.957]

In an anionic/radical domino process an interim single-electron transfer (SET) from the intermediate of the first anionic reaction must occur. Thus, a radical is generated which can enter into subsequent reactions. Although a SET corresponds to a formal change of the oxidation state, the transformations will be treated as typical radical reactions. To date, only a few true anionic/radical domino transformations have been reported in the literature. However, some interesting examples of related one-pot procedures have been established where formation of the radical occurs after the anionic step by addition of TEMPO or Bu3SnH. A reason for the latter approach are the problems associated with the switch between anionic and radical reaction patterns, which often do not permit the presence of a radical generator until the initial anionic reaction step is finished. [Pg.156]

First, we examined the efficiency of the initiation process. A solution of buthyllithium was added to a THF solution of 7 at -70°C. The color of the solution turned to red immediately and a strong ESR signal was observed with a well separated hyperfme structure. The observed radical species was identified as the anion radical of 2-butyl-l,l,2,2-tetramethyldisilanyl-substituted biphenyl by computational simulation as well as by comparison with the spectra of a model compound. The anion radical should be a product of a single electron transfer (SET) process from buthyllithium to the monomer. Since no polymeric product was obtained under the above-mentioned conditions, the SET process is an undesired side reaction of the initiation and one of the reasons why more higher molecular weight polymer was observed than expected. ... [Pg.289]

Therefore, it has been considered that the formation of the dimer involves a mechanism different to the simple head-to-head radical coupling of the parent monomer. As suggested by the authors, it is likely that the overall mechanistic sequence is initiated by the radical-anion 472 of compound 469 formed by a single electron transfer (SET) process, which is the first stage of the bromine-lithium exchange (Scheme 68) [128],... [Pg.76]

S ilylation-intramolecular reduction, ketone-alcohol reduction, 78-79 Single-electron transfer (SET) process, alkyl halides and triflate reduction to alkanes, 28-31... [Pg.755]

Reductive Cross-Coupling of Nitrones Recently, reductive coupling of nitrones with various cyclic and acyclic ketones has been carried out electrochem-ically with a tin electrode in 2-propanol (527-529). The reaction mechanism is supposed to include the initial formation of a ketyl radical anion (294), resulting from a single electron transfer (SET) process, with its successive addition to the C=N nitrone bond (Scheme 2.112) (Table 2.9). [Pg.223]

Single Electron Transfer A single electron transfer (SET) mechanism is often difficult to distinguish from an SN2 reaction because the principal product of these two pathways is the same, apart from the stereochemistry at carbon (race-mization instead of inversion). The radicals formed can recombine rapidly in a solvent cage (inner-sphere ET) [2, 193, 194]. The [HFe(CO)5] -catalyzed deiodina-tion of iodobenzene may serve as an example [179] (Eq. (13)). [Pg.536]

Since amines generally have low oxidation potentials, they are good electron donors in their ground state, and the donor ability is further enhanced by photoexcitation. The chemical consequence of this single electron transfer (SET) is the generation of the amine radical cations (aminium radicals) and an earlier review on the aminium radicals is available1. [Pg.684]

The first evidence that the radical cation generated by a single-electron transfer (SET) of an unsymmetrical 1,5-diene 408 can undergo a [3,3]-sigmatropic shift (Cope reaction)... [Pg.818]

These alkylations can be looked upon as aliphatic nucleophilic substitutions, usually thoughtto proceed via SnI, Sn2, or hybrids of these mechanisms. However, in recent years more and more evidence for a single-electron transfer (SET) mechanism, represented in Eqs. (28-31), was obtained, and it was suggested that Sn2 and SET are just limiting cases of the same single-electron transfer mechanism [205, 206]. The S ET pathway involves first a transfer of an electron from the nucleophile to the electrophile followed by bond formation, whereas the Sn2 reaction involves a... [Pg.113]


See other pages where Single-electron transfer SET is mentioned: [Pg.25]    [Pg.187]    [Pg.434]    [Pg.645]    [Pg.933]    [Pg.957]    [Pg.1204]    [Pg.374]    [Pg.645]    [Pg.105]    [Pg.104]    [Pg.177]    [Pg.223]    [Pg.83]    [Pg.309]    [Pg.28]    [Pg.53]    [Pg.55]    [Pg.477]    [Pg.306]    [Pg.57]    [Pg.62]    [Pg.419]    [Pg.469]    [Pg.55]   
See also in sourсe #XX -- [ Pg.146 ]




SEARCH



Electron single

SET—See Single electron transfer

Single Electron Transfer (SET) in Ionic Reactions

Single electron transfer

Single electron transfer mechanism (SET

Single-Electron Transfer (SET) Reactions

© 2024 chempedia.info