Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Simple polymer, definition

In February 1928, Wallace H. Carothers (Figure 1.2), then an Instructor at Harvard, joined du Pont at Wilmington to set up a fundamental research group in organic chemistry. One of the first topics he chose was the nature of polymers, which he proposed to study by using synthetic methods. He intended to build up some very large molecules by simple and definite reactions in such a way that... [Pg.7]

Definition of a Complex Polymer. A simple polymer is one vrtiich has at most one broad molecular property distribution (e.g., a broad molecular weight distribution). A complex polymer is one which has two or more broad molecular property distributions (e.g., a broad molecular weight distribution and a broad copolymer composition distribution) ( ). Properties such as molecular weight and composition, Aiich can be in so much variety in a polymer that they must be described as a distribution, are here termed "distributed properties". It is the presence of simultaneous breadth (i.e., variety) in more than one distributed property which is the defining characteristic of a "complex" polymer and the source of analysis difficulties. [Pg.60]

Chapter 5 gives a microscopic-world explanation of the second law, and uses Boltzmann s definition of entropy to derive some elementary statistical mechanics relationships. These are used to develop the kinetic theory of gases and derive formulas for thermodynamic functions based on microscopic partition functions. These formulas are apphed to ideal gases, simple polymer mechanics, and the classical approximation to rotations and vibrations of molecules. [Pg.6]

The term relaxation refers to the time required to respond to a change in temperature or pressure. It also implies some measure of the molecular motion, especially near a transition condition. Frequently an external stress is present, permitting the relaxation to be measured. For example, one could state that 1/e (0.367) of the polymer chains respond to an applied stress in 10 s at the glass transition temperature, providing a simple molecular definition. [Pg.361]

The definition of polymer thermal stabiUty is not simple owing to the number of measurement techniques, desired properties, and factors that affect each (time, heating rate, atmosphere, etc). The easiest evaluation of thermal stabiUty is by the temperature at which a certain weight loss occurs as observed by thermogravimetric analysis (tga). Early work assigned a 7% loss as the point of stabiUty more recentiy a 10% value or the extrapolated break in the tga curve has been used. A more reaUstic view is to compare weight loss vs time at constant temperature, and better yet is to evaluate property retention time at temperature one set of criteria has been 177°C for 30,000 h, or 240°C for 1000 h, or 538°C for 1 h, or 816°C for 5 min (1). [Pg.530]

In the semi-dilute regime, the rate of shear degradation was found to decrease with the polymer concentration [132, 170]. By extrapolation to the dilute regime, it is frequently argued that chain scission should be nonexistent in the absence of entanglements under laminar conditions. No definite proof for this statement has been reported yet and the problem of isolated polymer chain degradation in simple shear flow remains open to further investigation. [Pg.168]

Secondly, I wish to counteract anticipated despondency which some of the complexities on the present theoretical scene may perhaps provoke. For this purpose, I wish to invoke the decisive simplicity and definiteness of some of the experimental effects observed within the confines of the above, near ideal systems. This, as I often pointed out elsewhere, is unmatched in the field of crystal growth of simple substances. Complicated as polymers may seem, and subtle as some of the currently relevant theoretical issues, this should not obscure the essential simplicity and reproducibility of the core material. To be specific, the appropriate chains seem to want to fold and know when and how, and it is hardly possible to deflect them from it. Clearly, such purposeful drive towards a predetermined end state should continue to give encouragement to theorists for finding out why Those who are resolved to persevere or those who are newly setting out should find the present review a most welcome source and companion. [Pg.220]

When describing the effect of an external force, we must first define the force itself. A lay person s definition of a force is the amount of effort to get the desired effect. As scientists, we need a more precise definition of force. With a precise definition we can understand and quantify the effect of an applied force on a polymeric material. The mathematical definition of force is the work (which is a form of energy) required to move an object over some distance. Another way to define a force is in terms of the acceleration it creates when applied to some object of a mass m. In our everyday experiences, the first explanation is a simple idea to relate to. When we push a stalled car we exert a force on it. We could easily quantify the force from the weight of the car, the slope of the hill it is sitting on, and how far we must push it. Once we begin to talk about forces in polymer systems, the ideas become a bit more complicated. For example, the force required to open a bag of candy is defined by the work required to deform the bag until it ruptures by overcoming the intermolecular forces which hold the plastic together. [Pg.121]

Sherwin-Williams has developed such a polymer process control system. The methodology used to accommodate the contrasting requirements has two key elements. First, the software is based on a simple architecture that places the definition of changing reactor hardware elements and characteristics in easily modified configuration files (5). Second, the language uses a small number of basic commands to describe formulations and reactor control. Complex operations are described by reference to commands tables (macros) built using several basic commands or other macros. [Pg.179]

A repeat unit is the sequence of atoms that is repeated to build a polymer chain. This definition, although very simple, distinguishes between X-Y and X-XY-Y units. For instance, the repeat units of polyamide 6 and polyamide 6610 are ... [Pg.54]

Of course, it is uncommon for the free energy/ to obey (1). In particular, the entropy of an ideal mixture (or, for polymers, the Flory-Huggins entropy term) is definitely not of this form. On the other hand, in very many thermodynamic (especially mean field) models the excess (i.e., nonideal) part of the free energy does have the simple form (1). In other words, if we decompose the free energy as (setting kn = 1)... [Pg.269]

The simple analysis presented above confirms that new formulations are required to produce stable, reliable products for field use. Practical system requirements, as defined by Mil Spec conformity and the use of standard fabrication and assembly processes, definitely require that a electro-optic polymer system with better thermal properties than thermoplastic acrylates be developed. That this is true for optical interconnection boards and modules is not surprising because of their complexity. It is perhaps remarkable that it remains true for even simple devices, such as a packaged, pigtailed traveling-wave modulator. The ultimate success of electro-optic polymers will be their use in cost-effective products that are used by systems designers. [Pg.114]


See other pages where Simple polymer, definition is mentioned: [Pg.102]    [Pg.102]    [Pg.2537]    [Pg.560]    [Pg.676]    [Pg.32]    [Pg.43]    [Pg.426]    [Pg.79]    [Pg.14]    [Pg.159]    [Pg.158]    [Pg.671]    [Pg.51]    [Pg.56]    [Pg.211]    [Pg.15]    [Pg.8]    [Pg.456]    [Pg.200]    [Pg.169]    [Pg.206]    [Pg.321]    [Pg.114]    [Pg.29]    [Pg.165]    [Pg.560]    [Pg.8]    [Pg.138]    [Pg.104]    [Pg.88]    [Pg.3]    [Pg.70]    [Pg.158]   
See also in sourсe #XX -- [ Pg.60 ]




SEARCH



Polymers definition

© 2024 chempedia.info