Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silyl ketene acetals diastereoselective addition reactions

First, chemoselective (Chapter 24) conjugate addition of the silyl ketene acetal on the enone is preferred to direct aldol reaction with the aldehyde. Then an aldol reaction of the intermediate silyl enol ether on the benzaldehyde follows. The stereoselectivity results, firstly, from attack of benzalde-hyde on the less hindered face of the intermediate silyl enol ether, which sets the two side chains trans on the cyclohexanone, and, secondly, from the intrinsic diastereoselectivity of the aldol reaction (this is treated in some detail in Chapter 34). This is a summary mechanism. [Pg.757]

Aldol Reactions of Ester Derivatives. The Titanium(IV) C/tlor/dc-catalyzed addition of aldehydes to 0-silyl ketene acetals derived from acetate and propionate esters proceeds with high stereoselectivity. Formation of the silyl ketene acetal was found to be essential for high diastereoselectivity. Treatment of the silyl ketene acetal, derived from deprotonation of the acetate ester with LICA in THF and silyl trapping, with a corresponding aldehyde in the presence of TiCU (1.1 equiv) afforded the addition products in 93 7 diastereoselectivity and moderate yield (51-67%). Similarly, the propionate ester provides the anti-aldol product in high antilsyn selectivity (14 1) and facial selectivity (eq 4). [Pg.279]

Evans et al. recently reported the use of structurally well-defined Sn(II) Lewis acids for the enantioselective aldol addition reactions of a-heterosubstituted substrates [47]. These complexes are readily assembled from Sn(OTf)2 and C2-symmetric bis(oxazoline) ligands. The facile synthesis of these ligands commences with optically active 1,2-diamino alcohols, which are themselves readily available from the corresponding a-amino acids. The Sn(II)-bis(oxazoline) complexes were shown to function optimally as catalysts for enantioselective aldol addition reactions with aldehydes and ketone substrates that are suited to putatively chelate the Lewis acid. For example, use of 10 mol % Sn(II) catalyst, thioacetate, and thiopropionate derived silyl ketene acetals added at -78 °C in dichloromethane to glyoxaldehyde to give hydroxy diesters in superb yields, enantioselectivity, and diastereoselectivity (Eq. 27). The process represents an unusual example wherein 2,3-ant/-aldol adducts are obtained stereoselec-tively. [Pg.406]

This reaction was first reported by Mukaiyama et al. in 1974. It is a Lewis acid-catalyzed Michael conjugate addition of silyl enol ether to o ,/3-unsaturated compounds. Therefore, it is generally referred to as the Mukaiyama-Michael reaction. Because this reaction is essentially a conjugate addition, it is also known as the Mukaiyama-Michael addition or Mukaiyama-Michael conjugate addition. This reaction is a mechanistic complement for the base-catalyzed Michael addition, j and often occurs at much milder conditions and affords superior regioselectivity. s Besides silyl enol ether, silyl ketene acetals are also suitable nucleophiles in this reaction.For the hindered ketene silyl acetals, the Lewis acid actually mediates the electron transfer from the nucleophiles to o ,/3-unsaturated carbonyl molecules.On the other hand, the Q ,j8-unsaturated compounds, such as 3-crotonoyl-2-oxazolidinone, alkylidene malonates, and a-acyl-a,/3-unsaturated phosphonates are often applied as the Michael acceptors. It has been found that the enantioselectivity is very sensitive to the reactant structures —for example, Q -acyl-Q ,j8-unsaturated phosphonates especially prefers the unique syn- vs anft-diastereoselectivity in this reaction. In addition,... [Pg.1996]

Other reports deal with a pyrrolidine-catalysed homo-aldol condensation of aliphatic aldehydes (further accelerated by benzoic acid), a diastereoselective aldol-type addition of chiral boron azaenolates to ketones,the use of TMS chloride as a catalyst for TiCU-mediated aldol and Claisen condensations, a boron-mediated double aldol reaction of carboxylic esters, gas-phase condensation of acetone and formaldehyde to give methyl vinyl ketone, and ab initio calculations on the borane-catalysed reaction between formaldehyde and silyl ketene acetal [H2C=C(OH)OSiH3]. ... [Pg.24]

Helmchen [67] and Oppolzer [68] investigated and documented the use of camphor-derived auxiliaries in Mukaiyama aldol reactions. Silyl ketene acetals 106 and 108 participate in diastereoselective additions to aldehydes in the presence of TiCl4, affording adducts with up to 99 1 diastereoselectivity (Equations 7 and 8). [Pg.112]

The first catalytic enantioselective Mannich reaction was documented by Kobayashi, using the conveniently assembled BINOL-derived Zr catalyst 212 (Scheme 11.32) [150]. This catalyst was highly effective in enantioselective additions of silyl ketene acetals to N-(o-hydroxyphenyl)-aldimines such as 210. In a further expansion of the reaction scope, ( )- and (Z)-substituted a-alkoxy silyl enol ethers were observed to undergo diastereoselective additions to aldimines, giving syn and anti amino alcohols, respectively [151]. These processes were utilized in the rapid assembly of (2R,3S)-3-phenyliso-serine (214), a precursor of the C,3 side chain of paclitaxel, known to be essential for its anticancer activity. [Pg.366]

In the synthesis of D-eryt/zro-sphingosine (78 without BOC protection), the key step is the asymmetric aldol reaction of trimethylsilylpropynal 75 with ke-tene silyl acetal 76 derived from a-benzyloxy acetate. The reaction was carried out with 20 mol% of tin(II) triflate chiral diamine and tin(II) oxide. Slow addition of substrates to the catalyst in propionitrile furnishes the desired aldol adduct 77 with high diastereo- and enantioselectivity (syn/anti = 97 3, 91% ee for syn). In the synthesis of protected phytosphingosine (80, OH and NH2 protected as OAc and NHAc, respectively), the asymmetric aldol reaction is again employed as the key step. As depicted in Scheme 3-27, the reaction between acrolein and ketene silyl aectal 76 proceeds smoothly, affording the desired product 80 with 96% diastereoselectivity [syn/anti = 98 2) and 96% ee for syn (Scheme 3-27).50... [Pg.158]

The reactions proceeded efficiently under mild conditions in short time. The silyl enol ethers reacted with the activated acetals or aldehydes at -78 °C to give predominant erythro- or threo-products [136, 137] respectively. In the same manner, the aldol reaction of thioacetals, catalyzed by an equimolar amount of catalyst, resulted in <-ketosulfides [139] with high diastereoselectivity. In the course of this investigation, the interaction of silyl enol ethers with a,]3-unsaturated ketones, promoted by the trityl perchlorate, was shown to proceed regioselec-tively through 1,2- [141] or 1,4-addition [138]. The application of the trityl salt as a Lewis acid catalyst was spread to the synthesis of ]3-aminoesters [142] from the ketene silyl acetals and imines resulting in high stereoselective outcome. [Pg.373]

Diastereoselective Mannich-type reactions between ketene silyl acetals and chiral sulfinimines using simple metal-free Lewis bases such as tetraalkylammonium car-boxylates have been reported. The sulfinimine can even be generated in situ (from aldehyde and a chiral sulfonamide), using cesium carbonate, followed by addition of ketene silyl acetal at -78 °C, and as little as 1 mol% of catalyst.32... [Pg.6]

Several procedures for a one-pot Mannich-type reaction in water to give (3-amino carbonyl compounds catalyzed by either Lewis acid or Bronsted acid with or without addition of surfactants have been developed. The reactions are high yielding however, the diastereoselectivities are moderate. The HBF4-catalyzed reaction between aldimines and ketene silyl acetals in a water/SDS mixture provides high stereoselectivity with very good yields (Scheme 5.19). [Pg.194]

The sequential Michael addition/Ireland-Claisen reactions proceed with high diastereoselectivity in one pot. Preparation of the lithium enolate 68 with LDA in THF at —78 °C followed by the addition of the allylic ester acceptor 67 leads to the smooth conjugate addition, whose stereoselectivity was more than 98% diastereomeric excess. The ketene silyl acetal 70, which was formed by the trapping of the Michael addition intermediate 69 with TMSCl, underwent Ireland-Claisen rearrangement in the presence of PdCl2(PhCN)2... [Pg.1259]


See other pages where Silyl ketene acetals diastereoselective addition reactions is mentioned: [Pg.143]    [Pg.170]    [Pg.159]    [Pg.531]    [Pg.548]    [Pg.412]    [Pg.132]    [Pg.288]    [Pg.154]    [Pg.72]    [Pg.26]    [Pg.311]    [Pg.320]    [Pg.331]    [Pg.378]    [Pg.531]    [Pg.547]    [Pg.139]    [Pg.125]    [Pg.822]    [Pg.351]    [Pg.353]    [Pg.345]    [Pg.6]   


SEARCH



Acetates addition

Addition reactions acetalizations

Additions acetal

Diastereoselective addition

Diastereoselective reaction

Diastereoselective reactions Diastereoselectivity

Diastereoselectivity reaction

Keten acetal

Ketene acetal

Ketene acetals, addition

Ketene reaction

Ketenes acetals

Ketenes addition

Ketenes reactions

Ketenes silyl acetals

Silyl acetate

Silyl ketene acetals

Silyl ketene acetals, reaction

Silyl ketenes

Silyl ketenes, reactions

Silylation reactions

© 2024 chempedia.info