Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Addition reactions acetalizations

Because of the chemical similarity between benzoyl nitrate and the acetyl nitrate which is formed in solutions of nitric acid in acetic anhydride, it is tempting to draw analogies between the mechanisms of nitration in such solutions and in solutions of benzoyl nitrate in carbon tetrachloride. Similarities do exist, such as the production by these reagents of higher proportions of o-substituted products from some substrates than are produced by nitronium ions, as already mentioned and further discussed below. Further, in solutions in carbon tetrachloride of acetyl nitrate or benzoyl nitrate, the addition of acetic anhydride and benzoic anhydride respectively reduces the rate of reaction, implying that dinitrogen pentoxide may also be involved in nitration in acetic anhydride. However, for solutions in which acetic anhydride is also the solvent, the analogy should be drawn with caution, for in many ways the conditions are not comparable. Thus, carbon tetrachloride is a non-polar solvent, in which, as has been shown above,... [Pg.78]

In the nitration and acetoxylation of o-xylene the addition of acetic acid increased the rate in proportion to its concentration, the presence of 3-0 mol 1" accelerating the rate by a factor of 30. In the presence of a substantial concentration (2-2 mol 1 ) of acetic acid the rate of reaction obeyed the following kinetic expression... [Pg.89]

Finally a general approach to synthesize A -pyrrolines must be mentioned. This is tl acid-catalyzed (NH4CI or catalytic amounts of HBr) and thermally (150°C) induced tea rangement of cyclopropyl imines. These educts may be obtained from commercial cyan> acetate, cyclopropyl cyanide, or benzyl cyanide derivatives by the routes outlined below. Tl rearrangement is reminiscent of the rearrangement of 1-silyloxy-l-vinylcyclopropancs (p. 7 83) but since it is acid-catalyzed it occurs at much lower temperatures. A -Pyrrolines constitut reactive enamines and may be used in further addition reactions such as the Robinson anei lation with methyl vinyl ketone (R.V. Stevens, 1967, 1968, 1971). [Pg.298]

Unusual cyclocarbonylation of allylic acetates proceeds in the presence of acetic anhydride and an amine to afford acetates of phenol derivatives. The cinnamyl acetate derivative 408 undergoes carbonylation and Friedel-Crafts-type cyclization to form the a-naphthyl acetate 410 under severe condi-tions[263,264]. The reaction proceeds at 140-170 under 50-70 atm of CO in the presence of acetic anhydride and Et N. Addition of acetic anhydride is essential for the cyclization. The key step seems to be the Friedel-Crafts-type cyclization of an acylpalladium complex as shown by 409. When MeOH is added instead of acetic anhydride, /3,7-unsaturated esters such as 388 are... [Pg.344]

Since the principal hazard of contamination of acrolein is base-catalyzed polymerization, a "buffer" solution to shortstop such a polymerization is often employed for emergency addition to a reacting tank. A typical composition of this solution is 78% acetic acid, 15% water, and 7% hydroquinone. The acetic acid is the primary active ingredient. Water is added to depress the freezing point and to increase the solubiUty of hydroquinone. Hydroquinone (HQ) prevents free-radical polymerization. Such polymerization is not expected to be a safety hazard, but there is no reason to exclude HQ from the formulation. Sodium acetate may be included as well to stop polymerization by very strong acids. There is, however, a temperature rise when it is added to acrolein due to catalysis of the acetic acid-acrolein addition reaction. [Pg.129]

The initiating step in these reactions is the attachment of a group to the sulfoxide oxygen to produce an activated intermediate (5). Suitable groups are proton, acyl, alkyl, or almost any of the groups that also initiate the oxidations of alcohols with DMSO (40,48). In a reaction, eg, the one between DMSO and acetic anhydride, the second step is removal of a proton from an a-carbon to give an yUde (6). Release of an acetate ion generates the sulfur-stabilized carbonium ion (7), and the addition of acetate ion to the carbonium ion (7) results in the product (eq. 15) ... [Pg.109]

Rapid, simple, quaUtative methods suitable for determining the presence of benzene in the workplace or surroundings have been utilized since the 1930s. Many early tests offered methods for detection of aromatics but were not specific for benzene. A straightforward test allowing selective detection of benzene involves nitration of a sample to y -dinitrobenzene and reaction of the resultant ether extract with an ethanoHc solution of sodium hydroxide and methyl ethyl ketone (2-butanone), followed by the addition of acetic acid to eliminate interferences from toluene and xylenes. Benzene imparts a persistent red color to the solution (87). The method is claimed to be sensitive to concentrations as low as 0.27 ppm benzene from 10 mL air samples. [Pg.46]

Precipitation and Purification. During the hydrolysis, control tests are made by turbidimetric titration of samples taken intermittently. When the desired degree of hydrolysis is reached, the ester is precipitated from the reaction solution into water. It is important for the precipitate to have the proper texture for subsequent washing to remove acid and salts for thermal stabilization. Before precipitation, the reaction solution is usually diluted with additional aqueous acetic acid to reduce the viscosity. If a flake texture is desired, the solution is poured into a vigorously stirred, 10—15% aqueous acetic acid. To precipitate the acetate in powder form, dilute acetic acid is added to the stirred reaction solution. In both cases, the precipitated ester is suspended in 25—30% aqueous acid solutions and finally washed with deionized water. The dilution, precipitation temperature, agitation, and strength of the acid media must be controlled to ensure uniform texture. [Pg.254]

Alkynes react with mercuric acetate in acetic acid to give addition products. In the case of 3-hexyne, the product has -stereochemistry, but the Z-isomer is isolated from diphenylacetylene. The kinetics of the addition reaction are first-order in both alkyne and... [Pg.375]

Aldehydes and ketones undergo reversible addition reactions with alcohols. The product of addition of one mole of alcohol to an aldehyde or ketone is referred to as a hemiacetal or hemiketal, respectively. Dehydration followed by addition of a second molecule of alcohol gives an acetal or ketal. This second phase of the process can be catalyzed only by acids, since a necessary step is elimination of hydroxide (as water) from the tetrahedral intermediate. There is no low-energy mechanism for base assistance of this... [Pg.451]

Benzene-sensitized photolysis of methyl 3-cyclohexene-1-carboxylate in acetic acid leads to addition of acetic acid to the double bond. Only the trans adducts are formed. What factor(s) is (are) responsible for the reaction stereochemistry Which of the two possible addition products, A or B, do you expect to be the major product ... [Pg.784]

During the reaction the pH rises from ca. 9.5 to 11.5. Optimal yields of 80-90 % can be realized by slow addition of acetic acid to keep the pH constant at about 9. [Pg.218]

Condensation of sodium phenoxide witli 2,2,2-trifluoroethyl iodide gives a product of direct substitution in a low yield, several other ethers are formed by eliminatton-addition reactions [7] Use of mesylate as a leaving group and hex amethyl phosphoramide (HMPA) as a solvent increases the yield of the substitution [S] Even chlorine can be replaced when the condensation is performed with potassium fluoride and acetic acid at a high temperature [9] (equations 6-8)... [Pg.447]

Bu4N F , THF, 25°, I h, >90% yield. Fluoride ion is very basic, especially under anhydrous conditions, and thus may cause side reactions with base-sensitive substrates. The strong basicity can be moderated by the addition of acetic acid to the reaction, as was the case in the following reaction, after all others methods failed to remove the TBDMS group. ... [Pg.133]

When the reaction was run in CH3CN, migration of the EtS group to the 2-position was observed. This is attributed to episulfonium salt formation, with the resultant addition of acetate at the anomeric position. ... [Pg.152]

The first step is the liquid phase addition of acetic acid to butadiene. The acetoxylation reaction occurs at approximately 80°C and 27 atmospheres over a Pd-Te catalyst system. The reaction favors the 1,4-addition product (l,4-diacetoxy-2-butene). Hydrogenation of diacetoxybutene at 80°C and 60 atmospheres over a Ni/Zn catalyst yields 1,4-diacetoxybu-tane. The latter compound is hydrolyzed to 1,4-butanediol and acetic acid ... [Pg.258]

Acetal and hemiacetal groups are particularly common in carbohydrate chemistry. Glucose, for instance, is a polyhydroxy aldehyde that undergoes an internal nucleophilic addition reaction and exists primarily as a cyclic hemiacetal. [Pg.719]

Each of the following substances can be prepared by a nucleophilic addition reaction between an aldehyde or ketone and a nucleophile. Identify the reactants from which each was prepared. If the substance is an acetal, identify the carbonyl compound and the alcohol if it is an imine, identify the carbonyl compound and the amine and so forth. [Pg.739]

In spite of their intrinsic synthetic potential, addition reactions of metal enolates of non-stabilized esters, amides, and ketones to epoxides are not widely used in the synthesis of complex molecules. Following the seminal work of Danishefsky [64], who introduced the use of Et2AlCl as an efficient catalyst for the reaction, Taylor obtained valuable spiro lactones through the addition reaction of the lithium eno-late of tert-butyl acetate to spiro-epoxides, upon treatment of the corresponding y-... [Pg.295]

The fact that with acetal 1 (R1 = H R2 = CH3) a lower stereoselectivity is observed than with the acetals where R1 = Ft or C6II5 suggests that the bulkiness of the substituent at the acetal center also plays an important role in fixing the conformation of the transition state. With 1 bearing a hydrogen atom at the acetal center (R1 = II), the acetyl group is allowed to occupy the quasiequatorial position (3B) and the addition reaction therefore proceeds with no or only a weak chelation control. The same presumably holds for the elyoxal monoacetal 1 (Ri = R2 = M). [Pg.106]


See other pages where Addition reactions acetalizations is mentioned: [Pg.1315]    [Pg.1315]    [Pg.469]    [Pg.498]    [Pg.342]    [Pg.538]    [Pg.303]    [Pg.226]    [Pg.359]    [Pg.434]    [Pg.452]    [Pg.166]    [Pg.243]    [Pg.372]    [Pg.159]    [Pg.126]    [Pg.278]    [Pg.66]    [Pg.57]    [Pg.338]    [Pg.444]    [Pg.160]    [Pg.736]    [Pg.1282]    [Pg.59]    [Pg.199]    [Pg.759]    [Pg.769]    [Pg.29]    [Pg.105]   
See also in sourсe #XX -- [ Pg.288 ]




SEARCH



Acetals addition reactions with alkylaluminum

Acetals nucleophilic addition reactions

Acetals, a-hydroxy addition reactions with alkylaluminum

Acetals, a-keto nucleophilic addition reactions

Acetate aldol addition/reaction

Acetates addition

Addition Reactions Followed by Water Loss Acetal Formation

Additions acetal

Carbonyl compounds, addition reactions acetal formation

Diastereoselective addition reactions chiral silyl ketene acetals

Manganese acetate radical addition reactions

Mercuric acetate, addition reactions

Silyl ketene acetals conjugate addition reactions

Silyl ketene acetals diastereoselective addition reactions

© 2024 chempedia.info