Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silyl enol ethers Palladium oxidation

The protection of the hemiacetal hydroxyl in step C is followed by a purification of the dominant stereoisomer. The C-6 methyl group is introduced in step C by conjugate addition of dimethylcuprate. The enolate is trapped as the silyl enol ether and oxidized to the enone by palladium acetate. The enone from step D is then subjected to a Wittig reaction. As in several of the other syntheses, the hydrogenation in step E is used to establish the configuration at C-4 and C-6. [Pg.731]

The oxidation of silyl enol ethers 111 with palladium(n) acetate is a convenient nnethod for the preparation of synthetically useful 2,6-disubstituted 2,3-dihydro-4-pyridones 112 <95TL(36)9449>. [Pg.243]

Palladium-catalyzed bis-silylation of methyl vinyl ketone proceeds in a 1,4-fashion, leading to the formation of a silyl enol ether (Equation (47)).121 1,4-Bis-silylation of a wide variety of enones bearing /3-substituents has become possible by the use of unsymmetrical disilanes, such as 1,1-dichloro-l-phenyltrimethyldisilane and 1,1,1-trichloro-trimethyldisilane (Scheme 28).129 The trimethylsilyl enol ethers obtained by the 1,4-bis-silylation are treated with methyllithium, generating lithium enolates, which in turn are reacted with electrophiles. The a-substituted-/3-silyl ketones, thus obtained, are subjected to Tamao oxidation conditions, leading to the formation of /3-hydroxy ketones. This 1,4-bis-silylation reaction has been extended to the asymmetric synthesis of optically active /3-hydroxy ketones (Scheme 29).130 The key to the success of the asymmetric bis-silylation is to use BINAP as the chiral ligand on palladium. Enantiomeric excesses ranging from 74% to 92% have been attained in the 1,4-bis-silylation. [Pg.745]

Ceric ammonium nitrate promoted oxidative addition of silyl enol ethers to 1,3-butadiene affords 1 1 mixtures of 4-(/J-oxoalkyl)-substituted 3-nitroxy-l-butene and l-nitroxy-2-butene27. Palladium(0)-catalyzed alkylation of the nitroxy isomeric mixture takes place through a common ij3 palladium complex which undergoes nucleophilic attack almost exclusively at the less substituted allylic carbon. Thus, oxidative addition of the silyl enol ether of 1-indanone to 1,3-butadiene followed by palladium-catalyzed substitution with sodium dimethyl malonate afforded 42% of a 19 1 mixture of methyl ( )-2-(methoxycarbonyl)-6-(l-oxo-2-indanyl)-4-hexenoate (5) and methyl 2-(methoxycarbonyl)-4-(l-oxo-2-indanyl)-3-vinylbutanoate (6), respectively (equation 12). [Pg.698]

Enantioselective deprotonation can also be successfully extended to 4,4-disubstituted cyclohexanones. 4-Methyl-4-phenylcyclohexanone (3) gives, upon reaction with various chiral lithium amides in THF under internal quenching with chlorotrimethylsilane, the silyl enol ether 4 having a quaternary stereogenic carbon atom. Not surprisingly, enantioselectivities are lower than in the case of 4-tm-butylcyclohexanone. Oxidation of 4 with palladium acetate furnishes the a./i-unsaturated ketone 5 whose ee value can be determined by HPLC using the chiral column Chiralcel OJ (Diacel Chemical Industries, Ltd.)59c... [Pg.600]

In contrast, the closely related palladium acetate-promoted intramolecular alkylation of alkenes by tri-methylsilyl enol ethers (Scheme 4)6,7 has been used to synthesize a large number of bridged carbocyclic systems (Table 1). In principle, this process should be capable of being made catalytic in palladium(II), since silyl enol ethers are stable to a range of oxidants used to carry the Pd° -> Pd11 redox chemistry required for catalysis. In practice, catalytically efficient conditions have not yet been developed, and the reaction is usually carried out using a full equivalent of palladium(II) acetate. This chemistry has been used in the synthesis of quadrone (equation 2).8 With the more electrophilic palladium(II) trifluoroace-tate, methyl enol ethers underwent this cyclization process (equation 3).9... [Pg.573]

Figure 12.24 depicts the oxidation of a silyl enol ether A to give an a,/3-unsaturated ketone B. Mechanistically, three reactions must be distinguished. The first justifies why this reaction is introduced here. The silyl enol ether A is electrophilically substituted by palladium(II) chloride. The a-palladated cyclohexanone E is formed via the intermediary O-silylated oxocarbenium ion C and its parent compound D. The enol content of cyclohexanone, which is the origin of the silyl enol ether A, would have been too low to allow for a reaction with palladium(II) chloride. Once more, the synthetic equivalence of a silyl enol ether and a ketonic enol is the basis for success (Figure 12.24). [Pg.513]

Ito, Y., Suginome, M. Palladium-catalyzed or -promoted oxidation via 1,2- or 1,4-elimination oxidation of silyl enol ethers and related enol derivatives to a,P-unsaturated enones and other carbonyl compounds. Handbook of Organopalladium Chemistry for Organic Synthesis 2002, 2, 2873-2879. [Pg.667]

Ceric ammonium nitrate promoted oxidative addition of silyl enol ethers to 1,3-1 mixtures of 4-(/l-oxoalkyl)-substituted 3-nitroxy-l-butene and Palladium(O)-catalyzed alkylation of the nitroxy isomeric mixture... [Pg.698]

With this bicyclic intermediate available in sizeable amounts, ready advance to 111 could be conveniently accomplished prior to annulation of the second five-membered ring (Scheme XIV). 1,3-Carbonyl transposition was realized by complete eradication of the original carbonyl by Ireland s method [60] followed by allylic oxidation. Application of the Piers cyclopentannulation protocol [61] to 111 made 113 conveniently available. Introduction of a methyl group into ring B was brought about by treatment of the kinetically derived enol triflate [62] with lithium dimethylcuprate [63], Hydrolysis of 114 gave the dienone, which was directly transformed into 115 by oxidation of its silyl enol ether with palladium acetate in acetonitrile [64],... [Pg.21]

The four most common methods for the synthesis of late transition metal enolates are oxidative addition to halocarbonyl compoxmds, ligand metathesis with main group enolates or silyl enol ethers, nucleophilic addition of anionic metal complexes to halocarbonyl electrophiles, and insertion of an a,3-imsaturated carbonyl compoimd into a metal hydride. Examples of these synthetic routes are shown in Equation 3.47-Equation 3.50. Equation 3.47 shows the synthesis of a palladium enolate complex by oxidative addition of ClCHjC(0)CHj to Pd(PPh3), Equation 3.48 shows the synthesis of a palladium enolate complex by the addition of a potassium enolate to an aryl Pd(II) halide complex, and Equation 3.49 shows the synthesis of the C-bound W(II) enolate complex in Figure 3.7 by the addition of Na[( n -C5R5)(CO)jW] to the a-halocarbonyl compound. Finally, Equation 3.50 shows the synthesis of a rhodium enolate complex by insertion of but-l-en-3-one into a rhodium hydride. This last route has also been used to prepare enolates as intermediates in reductive aldol processes. - ... [Pg.101]

The proposed catalytic cycle for the above-described conjugate reduction is outlined in Scheme 17. Initial coordination of the nucleophilic Pd(0)-phosphine complex to the electron-deficient olefin to form complex I is a reversible process that occurs rapidly at room temperature. Oxidative addition of the sihcon hydride moiety to complex I would result in the hydrido olefin complex II. Migratory insertion of the hydride ligand into the electrophilic /S-carbon of the coordinated olefin can result in the palladium enolate intermediate in. Reductive elimination of the silicon moiety and the enolate completes the catalytic cycle and forms the silyl enol ether IV. The latter is prone to acid-catalyzed hydrolysis to produce the saturated ketone. "" ... [Pg.1114]

A possible alternative pathway for the transformation of III to a saturated ketone, one that circumvents the formation of silyl enol ether IV, involves the protonolysis of the palladium enolate in via oxidative addition of a proton donor ZH (Z = OH or Cl). The resultant Pd(IV) intermediate, V, undergoes double reductive eliminadon to produce the saturated carbonyl and RsSiZ, along with regeneration the Pd(0) catalyst... [Pg.1115]

Some synthetic modification for Pd(II)-catalyzed oxidation of silyl enol ethers is also developed. Silyl enol ethers prepared from aldehydes and ketones are converted to the corresponding a,/3-unsaturated carbonyl compound in good yields by 10 mol % of palladium(II) acetate in the presence of 1 atm pressure of O2 in DMSO as solvent (Scheme... [Pg.1206]

The first case of a tetrahedral palladium(O) tetraolefin complex (more exactly, Pd(diolefin)2) has been isolated in the course of the Saegusa oxidation of a silyl enol ether, aimed at the synthesis of alkaloids. Palladium acetate was used as oxidant in this reaction, and a brown compound separated from the solution, which was characterized by X-ray diffraction as 16 (Equation (5)). It decomposed upon heating to give the expected product of oxidation. This supports the accepted mechanism of Saegusa oxidation. ... [Pg.326]

Other metals besides palladium are also effective. Reaction of the cationic allyltetracarbonyUron complex derived from (1) or (2) with silyl enol ethers, O-sUyl ketene acetals, or allylstan-nanes, followed by oxidative decomplexation, gives the vinyl-sUane products. The process was shown to occur with near complete retention of stereochemistry (cf. eqs 4 and 5). ... [Pg.703]

The proposed catalytic cycle [42] is analogous to that shown in Scheme 5.6, except for the additional release of an enolate anion due to the fluoride-induced desilylation. Oxidative addition of allyl carbonates leads to the formation of the allyl complex 78, COj, and an alkoxide RO . The fluoride source and the alkoxide RO are capable of liberating an enolate anion by desilylation. This explains why substoichiometric amounts of Bu4NPhgSiF2 are sufficient to maintain the catalytic cycle that is displayed in Scheme 5.25 for the allylation of 2-methylcyclohexanone through the silyl enol ether. The carbon-carbon bond-forming step is assumed to occur by a collapse of the ion pair 79 consisting of the cationic allylpalladium complex and the enolate anion. Aside from these ionic species, covalently bound palladium enolates were also discussed. [Pg.280]

The protocols for the utilization of ketone-derived silyl enol ethers in Tsuji-Trost reactions were preceded by a report of Morimoto and coworkers on the enantioselective allylation of sUyl ketene acetals 88. Without external activation, they reacted with the allylic substrate 19d in the presence of the palladium complex derived from the amidine ligand 89 to give y,5-unsaturated esters 90 in moderate chemical yield but high enantiomeric excess (Scheme 5.29) [46]. Presumably, the pivalate anion hberated during the oxidative addition functions as an activator of the silyl ketene acetal. The protocol is remarkable in view of the fact that asymmetric allylic alkylations of carboxylic esters are rare. Interestingly, the asymmetric induction originates from a ligand with an uncomplicated structure. The protocol seems however rather restricted with respect to the substitution pattern of allylic component and sUyl ketene acetal. [Pg.284]


See other pages where Silyl enol ethers Palladium oxidation is mentioned: [Pg.95]    [Pg.104]    [Pg.618]    [Pg.154]    [Pg.240]    [Pg.59]    [Pg.541]    [Pg.544]    [Pg.142]    [Pg.144]    [Pg.137]    [Pg.142]    [Pg.144]    [Pg.698]    [Pg.1097]    [Pg.2462]    [Pg.2463]    [Pg.137]    [Pg.144]    [Pg.144]    [Pg.233]    [Pg.465]    [Pg.5]    [Pg.406]    [Pg.424]    [Pg.206]   
See also in sourсe #XX -- [ Pg.283 ]




SEARCH



Enol ethers oxidation

Enolate, oxidation

Enolates oxidation

Enolates silylation

Enols oxidation

Ethers oxidation

Oxidation palladium

Oxidation silyl enolates

Palladium enolate

Palladium enolates

Palladium ethers

Palladium oxide

Palladium oxidized

Silyl enol ether palladium acetate oxidation

Silyl enol ethers

Silyl enol ethers oxidation

Silyl enolate

Silyl enolates

© 2024 chempedia.info