Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silver bromid

Bromides of sodium, potassium, magnesium and calcium occur in sea water (about 0.07 % bromine) but the Dead Sea contains much more (5% bromine). Salt deposits (e.g. at Stassfurt) also contain these bromides. Silver bromide, AgBr, is found in South America. [Pg.318]

Bromine has a lower electron affinity and electrode potential than chlorine but is still a very reactive element. It combines violently with alkali metals and reacts spontaneously with phosphorus, arsenic and antimony. When heated it reacts with many other elements, including gold, but it does not attack platinum, and silver forms a protective film of silver bromide. Because of the strong oxidising properties, bromine, like fluorine and chlorine, tends to form compounds with the electropositive element in a high oxidation state. [Pg.322]

Iodine as such finds few uses but a solution in alcohol and water, also containing potassium iodide ( tincture of iodine was commonly used as an antiseptic for cuts and wounds, but had rather an irritant action. Iodoform (triiodomethane), CHI3, is also an antiseptic, but newer compounds of iodine are now in use. Silver iodide, like silver bromide, is extensively used in the photographic industry. [Pg.348]

Addition of silver nitrate to a solution of a bromide in nitric acid produces a cream-coloured precipitate of silver bromide, soluble in ammonia (but not so readily as silver chloride). The reaction may be used quantitatively, as for a chloride. [Pg.349]

When the film is developed (the developer being a reducing agent), the unchanged silver bromide immediately surrounding these nuclei is reduced to give a visible blackening of the film. [Pg.428]

Hydrolysis of Ethyl Bromide. Add -a few drops of pure freshly distilled ethyl bromide to 2-3 ml. of aqueous silver nitrate solution in a test-tube and shake. Only a faint opalescence of silver bromide should be formed. -Now carefully warm the mixture in a small Bunsen flame, with gentle shaking silver bromide soon appears as a white suspension which rapidly increases in quantity and becomes a heavy precipitate. The ethyl bromide is thus moderately stable in cold water, but rapidly hydrolysed by hot water. [Pg.102]

Spectral Sensitization. The intrinsic absorption, and therefore the intrinsic photographic sensitivity, of silver bromide and silver iodobromide microcrystals falls off rapidly for wavelengths greater than 500 nm (see Fig. 2). In fact, silver chloride crystals have almost no sensitivity in the visible... [Pg.448]

Only three simple silver salts, ie, the fluoride, nitrate, and perchlorate, are soluble to the extent of at least one mole per Hter. Silver acetate, chlorate, nitrite, and sulfate are considered to be moderately soluble. AH other silver salts are, at most, spatingly soluble the sulfide is one of the most iasoluble salts known. SHver(I) also forms stable complexes with excess ammonia, cyanide, thiosulfate, and the haUdes. Complex formation often results ia the solubilization of otherwise iasoluble salts. Silver bromide and iodide are colored, although the respective ions are colorless. This is considered to be evidence of the partially covalent nature of these salts. [Pg.88]

Silver Bromide. Silver bromide, AgBr, is formed by the addition of bromide ions to an aqueous solution of silver nitrate. The light yellow to green-yeUow precipitate is less soluble in ammonia than silver chloride, but it easily dissolves in the presence of other complexing agents, such as thiosulfate ions. [Pg.89]

Silver bromide crystals, formed from stoichiometric amounts of silver nitrate and potassium bromide, are characterized by a cubic stmcture having interionic distances of 0.29 nm. If, however, an excess of either ion is present, octahedral crystals tend to form. The yellow color of silver bromide has been attributed to ionic deformation, an indication of its partially covalent character. Silver bromide melts at 434°C and dissociates when heated above 500°C. [Pg.89]

Silver bromide is significantly more photosensitive than silver chloride, resulting in the extensive use of silver bromide in photographic products. [Pg.89]

The crystal stmcture of photographic silver bromide is often octahedral. [Pg.89]

Other apphcations of sodium bromide iaclude use ia the photographic iadustry both to make light-sensitive silver bromide [7785-23-1] emulsions and to lower the solubiUty of silver bromides during the developing process use as a wood (qv) preservative in conjunction with hydrogen peroxide (14) as a cocatalyst along with cobalt acetate [917-69-1] for the partial oxidation of alkyl side chains on polystyrene polymers (15) and as a sedative, hypnotic, and anticonvulsant. The FDA has, however, indicated that sodium bromide is ineffective as an over-the-counter sleeping aid for which it has been utilized (16). [Pg.189]

As shown in equation 12, the chemistry of this developer s oxidation and decomposition has been found to be less simple than first envisioned. One oxidation product, tetramethyl succinic acid (18), is not found under normal circumstances. Instead, the products are the a-hydroxyacid (20) and the a-ketoacid (22). When silver bromide is the oxidant, only the two-electron oxidation and hydrolysis occur to give (20). When silver chloride is the oxidant, a four-electron oxidation can occur to give (22). In model experiments the hydroxyacid was not converted to the keto acid. Therefore, it seemed that the two-electron intermediate triketone hydrate (19) in the presence of a stronger oxidant would reduce more silver, possibly involving a species such as (21) as a likely reactive intermediate. This mechanism was verified experimentally, using a controlled, constant electrochemical potential. At potentials like that of silver chloride, four electrons were used at lower potentials only two were used (104). [Pg.509]

Fig. 3.16. High-resolution TOF SIMS images of silver bromide and silver chloride crystals. Fig. 3.16. High-resolution TOF SIMS images of silver bromide and silver chloride crystals.
On a smaller scale, the largest producer of iodine is Japan where it is extracted from. seaweed containing more than 0.05 parts per million. The most important industrial iodine compound is silver iodide used with silver bromide in photography. Iodine is important in medicine for treating thyroid problems by adding it to table salt. It is used directly as a disinfectant, and a component of d vs. Crystalline silver iodide is used for cloud seeding. [Pg.268]

Bromo-A-homo-estra-4y5 0)-diene-3, l-dione (49). A solution of silver perchlorate (0.55 g, 5 mole-eq) in acetone (2 ml) is added to a refluxing solution of monoadduct (48 0.28 g) in acetone (30 ml) containing water (0.5 ml). After being heated at reflux for 25 min the reaction mixture is cooled and the precipitated silver bromide is removed by filtration, yield about 0.11 g. The filtrate is diluted with water (500 ml) and is thoroughly extracted with chloroform. The chloroform extracts are washed with water and saturated salt solution, dried over anhydrous magnesium sulfate, and evaporated at... [Pg.372]

A-Homo-estra-, 4, )-triene-3, l-dione (50). A solution of bromo ketone (49 0.2 g), silver perchlorate (0.5 g) and 20% aqueous acetone (30 ml) is heated at reflux with stirring for 30 min and then allowed to cool to room temperature. The mixture is filtered to remove precipitated silver bromide (ca. 0.19 g) and the filtrate is diluted with water (200 ml) and then extracted with chloroform. The chloroform extracts are washed, successively with water, 5% sodium bicarbonate solution, water and saturated salt solution. After being dried over anhydrous magnesium sulfate, the solvents are removed at reduced pressure to give a solid. Recrystallization from ethyl acetate gives A-homo-estra-l,4,5(10)-triene-3,17-dione (50 0.17 g) mp 193-197°. [Pg.373]

The reaction is likely to proceed by a radical-chain mechanism, involving intermediate formation of carboxyl radicals, as in the related Kolbe electrolytic synthesis. Initially the bromine reacts with the silver carboxylate 1 to give an acyl hypobromite species 3 together with insoluble silver bromide, which precipitates from the reaction mixture. The unstable acyl hypobromite decomposes by homolytic cleavage of the O-Br bond, to give a bromo radical and the carboxyl radical 4. The latter decomposes further to carbon dioxide and the alkyl radical 5, which subsequently reacts with hypobromite 3 to yield the alkyl bromide 2 and the new carboxyl radical 4Z... [Pg.167]

Brom-s ure, /. bromic acid, -schwefel, tn. sulfur bromide, -silber, n. silver bromide, -silizium, n. silicon bromide. -spat, n. bromyrite (AgBr). -stickstoff, tn. nitrogen bromide, -toluol, n. bromotoluene. -uber-trager, tn. bromine carrier. [Pg.83]


See other pages where Silver bromid is mentioned: [Pg.360]    [Pg.360]    [Pg.1702]    [Pg.2851]    [Pg.429]    [Pg.303]    [Pg.273]    [Pg.756]    [Pg.906]    [Pg.891]    [Pg.69]    [Pg.440]    [Pg.443]    [Pg.446]    [Pg.446]    [Pg.448]    [Pg.454]    [Pg.457]    [Pg.459]    [Pg.292]    [Pg.292]    [Pg.428]    [Pg.53]    [Pg.462]    [Pg.105]    [Pg.123]    [Pg.169]    [Pg.268]    [Pg.371]    [Pg.411]   
See also in sourсe #XX -- [ Pg.193 ]




SEARCH



Silver bromide

© 2024 chempedia.info