Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silicone spheres crosslinked

EFFECT ON POLYMER AND/OR OTHER ADDITIVES Crosslinked silicone spheres have their biggest application in polypropylene films.They lower coefficient of friction and blocking force. Spheres do not affect film clarity and have high temperature resistance. They are approved by the FDA for contact with food up to the concentration in film of 5,000 ppm. ... [Pg.175]

In the JKR experiments, a macroscopic spherical cap of a soft, elastic material is in contact with a planar surface. In these experiments, the contact radius is measured as a function of the applied load (a versus P) using an optical microscope, and the interfacial adhesion (W) is determined using Eqs. 11 and 16. In their original work, Johnson et al. [6] measured a versus P between a rubber-rubber interface, and the interface between crosslinked silicone rubber sphere and poly(methyl methacrylate) flat. The apparatus used for these measurements was fairly simple. The contact radius was measured using a simple optical microscope. This type of measurement is particularly suitable for soft elastic materials. [Pg.94]

In an attempt to determine the applicability of JKR and DMT theories, Lee [91] measured the no-load contact radius of crosslinked silicone rubber spheres in contact with a glass slide as a function of their radii of curvature (R) and elastic moduli (K). In these experiments, Lee found that a thin layer of silicone gel transferred onto the glass slide. From a plot of versus R, using Eq. 13 of the JKR theory, Lee determined that the work of adhesion was about 70 7 mJ/m". a value in clo.se agreement with that determined by Johnson and coworkers 6 using Eqs. 11 and 16. [Pg.101]

An example of a Maugis-Pollock system is polystyrene particles having radii between about 1 and 6 p.m on a polished silicon substrate, as studied by Rimai et al. [64]. As shown in Fig. 4, the contact radius was found to vary as the square root of the particle radius. Similar results were reported for crosslinked polystyrene spheres on Si02/silicon substrates [65] and micrometer-size glass particles on silicon substrates [66]. [Pg.159]

Janus micelles are non-centrosymmetric, surface-compartmentalized nanoparticles, in which a cross-linked core is surrounded by two different corona hemispheres. Their intrinsic amphiphilicity leads to the collapse of one hemisphere in a selective solvent, followed by self-assembly into higher ordered superstructures. Recently, the synthesis of such structures was achieved by crosslinking of the center block of ABC triblock copolymers in the bulk state, using a morphology where the B block forms spheres between lamellae of the A and C blocks [95, 96]. In solution, Janus micelles with polystyrene (PS) and poly(methyl methacrylate) (PMMA) half-coronas around a crosslinked polybutadiene (PB) core aggregate to larger entities with a sharp size distribution, which can be considered as supermicelles (Fig. 20). They coexist with single Janus micelles (unimers) both in THF solution and on silicon and water surfaces [95, 97]. [Pg.197]

Precrosslinked poly(organosiloxane) particles are composed of crosslinking trifunctional and linear difunctional siloxane units (T and D units, respectively) [5]. The molar ratios of D and T units can be varied without restrictions thus, hard spheres (fillers) as well as soft, elastic silicone particles are accessible. In this study, the siloxane particles were synthesized in emulsion. The particle size was controlled by emulsifier concentration and crosslink density highly crosslinked particles were obtained with particle diameters ranging from 20-50 nm the size of elastic particles could be varied between 70 and 150 nm. The composition of precrosslinked poly(organosiloxane) particles is summarized in Scheme 1 further, organic radicals R which can be incorporated into the partieles are listed [6,7]. [Pg.674]


See other pages where Silicone spheres crosslinked is mentioned: [Pg.175]    [Pg.175]    [Pg.175]    [Pg.161]    [Pg.161]    [Pg.1705]    [Pg.604]    [Pg.311]   
See also in sourсe #XX -- [ Pg.175 ]

See also in sourсe #XX -- [ Pg.161 ]




SEARCH



Crosslinked silicone

Silicon spheres

© 2024 chempedia.info