Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silicon elemental properties

Physical Properties of Carbon-Element and Silicon-Element Bonds... [Pg.4]

Preparation and properties of silicon. Elemental silicon of about 98% purity may be produced by the reduction of silicon dioxide by aluminum. [Pg.580]

To understand Group 14 - and especially organosilicon - chemistry some comparisons between silicon and carbon have to be considered. There are two major properties that distinguish silicon from carbon. Silicon atoms are about 50 % larger than carbon atoms and this increased size will have some ramifications and consequences, such as lower barriers to silicon-element bond rotations and less stable n-bonds. Furthermore, the smaller Pauling electronegativity of silicon results in differently polar silicon-element bonds compared to carbon and thus will change its reactivity and enable reactions not possible in carbon chemistry. [Pg.1]

A few solids make an almost infinite three-dimensional array of covalent bonds to neighboring atoms. Such solids are called covalent network solids. Diamond (a form of carbon), elemental silicon, elemental germanium, and silicon dioxide are examples (see Figure 21.3). Although few solids can be described this way, the ones that can have distinctive properties They are very hard with high melting points. It takes a lot of energy, either mechanical or thermal, to break the almost infinite network of covalent bonds. [Pg.747]

In their research, Robert and Jennifer are working with some of the elements in Groups 3A (13), 4A (14) and 5A (15) of the periodic table. These elements such as silicon have properties that make them good semiconductors. A microchip requires growing a single crystal of a semiconductor such as pure silicon. When small amounts of impurities are added to the crystalline structure, holes form through which electrons can travel with little obstruction. Microchips are manufactured for... [Pg.133]

Importantly, ionic liquids show excellent properties on the adsorption of microwave. The combination of microwave-assisted synthesis and ionothermal synthesis opens up an efficient and safe route to prepare zeolite materials [60]. Tian and coworkers reported the microwave-assisted ionothermal synthesis of AlPO-ll using [EmimJBr [61]. Silicon element was also successfully introduced to the framework forming SAPO-11 with potential catalytic applications. In addition, Yan and coworkers developed the ambient pressure synthesis method for silicate zeolites by combining the advantages of ionothermal synthesis, dry-gel conversion, and microwave irradiation [62]. With the assistance of microwave-assisted synthesis, the safe and fast process of ionothermal synthesis has shown to be a promising synthetic route for a variety of zeolite structures. [Pg.10]

All Group IV elements form both a monoxide, MO, and a dioxide, MO2. The stability of the monoxide increases with atomic weight of the Group IV elements from silicon to lead, and lead(II) oxide, PbO, is the most stable oxide of lead. The monoxide becomes more basic as the atomic mass of the Group IV elements increases, but no oxide in this Group is truly basic and even lead(II) oxide is amphoteric. Carbon monoxide has unusual properties and emphasises the different properties of the group head element and its compounds. [Pg.177]

All Group IV elements form tetrachlorides, MX4, which are predominantly tetrahedral and covalent. Germanium, tin and lead also form dichlorides, these becoming increasingly ionic in character as the atomic weight of the Group IV element increases and the element becomes more metallic. Carbon and silicon form catenated halides which have properties similar to their tetrahalides. [Pg.195]

By reference to the elements carbon, silicon, tin and lead, show how the properties of an element and those of its compounds can be related to ... [Pg.205]

Although its electrical conductivity is only about 60% that of copper, it is used in electrical transmission lines because of its light weight. Pure aluminum is soft and lacks strength, but it can be alloyed with small amounts of copper, magnesium, silicon, manganese, and other elements to impart a variety of useful properties. [Pg.32]

The section on Spectroscopy has been retained but with some revisions and expansion. The section includes ultraviolet-visible spectroscopy, fluorescence, infrared and Raman spectroscopy, and X-ray spectrometry. Detection limits are listed for the elements when using flame emission, flame atomic absorption, electrothermal atomic absorption, argon induction coupled plasma, and flame atomic fluorescence. Nuclear magnetic resonance embraces tables for the nuclear properties of the elements, proton chemical shifts and coupling constants, and similar material for carbon-13, boron-11, nitrogen-15, fluorine-19, silicon-19, and phosphoms-31. [Pg.1284]

Common alloying elements include nickel to improve low temperature mechanical properties chromium, molybdenum, and vanadium to improve elevated-temperature properties and silicon to improve properties at ordinary temperatures. Low alloy steels ate not used where corrosion is a prime factor and are usually considered separately from stainless steels. [Pg.347]

More than half of the elements in the Periodic Table react with silicon to form one or more silicides. The refractory metal and noble metal silicides ate used in the electronics industry. Silicon and ferrosilicon alloys have a wide range of applications in the iron and steel industries where they are used as inoculants to give significantly improved mechanical properties. Ferrosilicon alloys are also used as deoxidizers and as an economical source of silicon for steel and iron. [Pg.535]

Titanium Silicides. The titanium—silicon system includes Ti Si, Ti Si, TiSi, and TiSi (154). Physical properties are summarized in Table 18. Direct synthesis by heating the elements in vacuo or in a protective atmosphere is possible. In the latter case, it is convenient to use titanium hydride instead of titanium metal. Other preparative methods include high temperature electrolysis of molten salt baths containing titanium dioxide and alkalifluorosiUcate (155) reaction of TiCl, SiCl, and H2 at ca 1150°C, using appropriate reactant quantities for both TiSi and TiSi2 (156) and, for Ti Si, reaction between titanium dioxide and calcium siUcide at ca 1200°C, followed by dissolution of excess lime and calcium siUcate in acetic acid. [Pg.132]

The technology of silicon and germanium production has developed rapidly, and knowledge of die self-diffusion properties of diese elements, and of impurity atoms has become reasonably accurate despite die experimental difficulties associated widi die measurements. These arise from die chemical affinity of diese elements for oxygen, and from die low values of die diffusion coefficients. [Pg.223]

Germanium was predicted as the missing element of a triad between silicon and tin by J. A. R. Newlands in 1864, and in 1871 D. I. Mendeleev specified the properties that ekasilicon would have (p. 29). The new element was discovered by C. A. Winkler in 1886 during the analysis of a new and rare mineral argyrodite, AggGeSfi " he named it in honour of his country, Germany. By contrast, tin and lead are two of the oldest metals known... [Pg.367]

A photovoltaic cell (often called a solar cell) consists of layers of semiconductor materials with different electronic properties. In most of today s solar cells the semiconductor is silicon, an abundant element in the earth s crust. By doping (i.e., chemically introducing impurity elements) most of the silicon with boron to give it a positive or p-type electrical character, and doping a thin layer on the front of the cell with phosphorus to give it a negative or n-type character, a transition region between the two types... [Pg.1058]

Steel is essentially iron with a small amount of carbon. Additional elements are present in small quantities. Contaminants such as sulfur and phosphorus are tolerated at varying levels, depending on the use to which the steel is to be put. Since they are present in the raw material from which the steel is made it is not economic to remove them. Alloying elements such as manganese, silicon, nickel, chromium, molybdenum and vanadium are present at specified levels to improve physical properties such as toughness or corrosion resistance. [Pg.905]

The discussion so far has been limited to the structure of pure metals, and to the defects which exist in crysteds comprised of atoms of one element only. In fact, of course, pure metals are comparatively rare and all commercial materials contain impurities and, in many cases also, deliberate alloying additions. In the production of commercially pure metals and of alloys, impurities are inevitably introduced into the metal, e.g. manganese, silicon and phosphorus in mild steel, and iron and silicon in aluminium alloys. However, most commercial materials are not even nominally pure metals but are alloys in which deliberate additions of one or more elements have been made, usually to improve some property of the metal examples are the addition of carbon or nickel and chromium to iron to give, respectively, carbon and stainless steels and the addition of copper to aluminium to give a high-strength age-hardenable alloy. [Pg.1270]

By the middle of the nineteenth century more than 60 elements were known with new ones continuing to be discovered. For each of these elements, chemists attempted to determine its atomic weight, density, specific heat, and other properties. The result was a collection of facts, which lacked rational order, Mendeleev noticed that if the elements were arranged by their atomic weights, then valencies and other properties tended to recur periodically. However, there were gaps in the pattern and in a paper of 1871 Mendeleev asserted that these corresponded to elements that existed but had not yet been discovered. He named three of these elements eka-aluminium, eka-boron and eka-silicon and gave detailed descriptions of their properties. The reaction of the scientific world was sceptical. But then in 1874 Lecoq de Boisbaudran found an... [Pg.46]


See other pages where Silicon elemental properties is mentioned: [Pg.668]    [Pg.1794]    [Pg.203]    [Pg.3]    [Pg.1182]    [Pg.1417]    [Pg.328]    [Pg.1794]    [Pg.87]    [Pg.14]    [Pg.17]    [Pg.21]    [Pg.166]    [Pg.205]    [Pg.262]    [Pg.34]    [Pg.347]    [Pg.355]    [Pg.167]    [Pg.6]    [Pg.329]    [Pg.367]    [Pg.789]    [Pg.488]    [Pg.909]    [Pg.739]   
See also in sourсe #XX -- [ Pg.185 ]




SEARCH



Elements properties

Silicon, elemental

Silicones properties

© 2024 chempedia.info