Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silica-alumina/transition metal catalyst

Typical acidic catalysts are silica—alumina, transition metal sulphates or chlorides, calcium phosphate etc. They are characterised by low deuterium kinetic isotope effects and low stereoselectivity (see Tables 8,11 and 12). These results correspond to the E2cA or El mechanisms, between which a transition may be observed due to the influence of the structure of the reactants, i.e. according to the polarity of the Ca—X and Cp—H bonds. Again, the reactions of 1,2-dibromoethane and 1,1,2,2-tetrachloroethane yielded the evidence. The deuterium kinetic isotope effect on silica—alumina was 1.0 for the dibromo-derivative, which indicates a pure El mechanism, whereas for the tetrachloro-derivative, the value of 1.5 was found. [Pg.308]

In the 1950s, almost two decades after the launch of LDPE, transition metal catalysts proved capable of producing unbranched linear low density polyethylene (LLDPE) and linear high-density polyethylene (HOPE), both of which had significantly different properties from LDPE. Remarkably, the discovery occuued nearly simultaneously in three different research groups using three different catalyst systems. First was Standard of Indiana s reduced molybdate on alumina catalyst in 1951, followed by Phillips with chromium oxide on silica ( chromox ) catalysts, and Ziegler s titanium chloride/ alkylaluminum halide systems in 1953 (only the latter two were widely commercialized). At about the same time, crystalline polypropylene (PP) was produced in the Phillips labs... [Pg.657]

Raman spectroscopy has provided information on catalytically active transition metal oxide species (e. g. V, Nb, Cr, Mo, W, and Re) present on the surface of different oxide supports (e.g. alumina, titania, zirconia, niobia, and silica). The structures of the surface metal oxide species were reflected in the terminal M=0 and bridging M-O-M vibrations. The location of the surface metal oxide species on the oxide supports was determined by monitoring the specific surface hydroxyls of the support that were being titrated. The surface coverage of the metal oxide species on the oxide supports could be quantitatively obtained, because at monolayer coverage all the reactive surface hydroxyls were titrated and additional metal oxide resulted in the formation of crystalline metal oxide particles. The nature of surface Lewis and Bronsted acid sites in supported metal oxide catalysts has been determined by adsorbing probe mole-... [Pg.261]

Olefin metathesis is the transition-metal-catalyzed inter- or intramolecular exchange of alkylidene units of alkenes. The metathesis of propene is the most simple example in the presence of a suitable catalyst, an equilibrium mixture of ethene, 2-butene, and unreacted propene is obtained (Eq. 1). This example illustrates one of the most important features of olefin metathesis its reversibility. The metathesis of propene was the first technical process exploiting the olefin metathesis reaction. It is known as the Phillips triolefin process and was run from 1966 till 1972 for the production of 2-butene (feedstock propene) and from 1985 for the production of propene (feedstock ethene and 2-butene, which is nowadays obtained by dimerization of ethene). Typical catalysts are oxides of tungsten, molybdenum or rhenium supported on silica or alumina [ 1 ]. [Pg.224]

This work is a contribution to the understanding of the effect of spillover hydrogen in a type of catalyst of considerable industrial importance, namely that composed of transition metal sulfides and amorphous acidic solids. This is typically the case of sulfided CoMo supported on silica-alumina used for mild hydrocracking. [Pg.97]

The surfaces of some types of silica and alumina freed from adsorbed water contain acidic -OH groups. Ballard et al. (15) showed that these -OH groups react readily with transition metal alkyls giving stable compounds that are highly active polymerization catalysts for olefins. These systems are best described with reference to silica. [Pg.293]

Catalyst systems consisting of reduced transition metal oxides on supports such as alumina or silica developed during 50s are of considerable importance for the polymerisation of ethylene. [Pg.265]

Earlier transition metals, as zirconium and hafnium, are still more active in hydrogenolysis, which allows zirconium hydrides to be used in depolymerization reactions (hydrogenolysis of polyethylene and polypropylene) [89], In this case, the zirconium hydride was supported on silica-alumina. Aluminum hydrides close to [(=SiO)3ZrH] sites would increase their electrophilicity and, thus, their catalytic activity. A catalyst prepared in this way was able to convert low-density polyethylene (MW 125000) into saturated oligomers (after 5h) or lower alkanes at 150°C (100% conversion). It was also able to cleave commercial isotactic polypropylene (MW 250000) under hydrogen at about 190 °C (40% of the starting polypropylene was converted into lower alkanes after 15 h of reaction). [Pg.433]

SMSI is also thought to affect methanation catalysts (normally transition metal or noble metals supported on alumina), which are used in the producton of substitute natural gas (SNG). In general, heating in H2 causes sintering on alumina and silica supports and heating in O2 or steam can cause dispersion and particle coalescence at 200 °C (Rukenstein and Lee 1984,1987, Nakayama et al 1984). The data have been based on ex situ EM studies. Here EM methods, especially under dynamic reaction conditions, can provide a wealth of new insights into metal-support interactions under reaction conditions. [Pg.180]

It was later found that stable organometallic compounds of transition metals exhibiting very low polymerization activity could be transformed into high-activity catalysts when deposited on silica, alumina, or silica-alumina.287-289 Interaction of surface hydroxyl groups with the organometallic compounds such as chromocenes, benzyl, and Tt-allyl complexes results in the formation of surface-bound organometallic complexes (41-43) 289-291... [Pg.753]

Both heterogeneous and homogeneous disproportionation catalysts are known. All contain a transition metal component with derivatives of Mo, W, and Re being the most important. Heterogeneous catalysts are generally metal oxides deposited on a support such as silica or alumina (1, 4). Homogeneous catalysts in general require a non-transition metal derivative as cocatalyst (2, 3). [Pg.202]

A size-selective synthesis of nanostructured transition metal clusters (Pd, Ni) has been reported166, as has the preparation of colloidal palladium in organic solvents167, the latter of which is an active and stable catalyst for selective hydrogenation. The use of microwaves in the preparation of palladium catalysts on alumina and silica resulted in hydrogenation catalysts with improved crystallite size and activity168. [Pg.806]

Many of the catalysts for the hydrodesulfurization process are produced by combining (Table 5-5) a transition metal (or its salt) with a solid support. The metal constituent is the active catalyst. The most commonly used materials for supports are alumina, silica, silica-alumina, kieselguhr, magnesia (and other metal oxides), as well as the zeolites. The support can be manufactured in a variety of shapes or may even be crushed to particles of the desired size. The metal constituent can then be added by contact of the support with an aqueous solution of the metal salt. The whole is then subjected to further treatment that will dictate the final form of the metal on the support (i.e., the metal oxide, the metal sulfide, or even the metal itself). [Pg.202]

The use of supports containing hydroxyl groups such as alumina, silica, Mg(OH)Cl, etc., for chemical fixing of the transition metal compound has been widespread since the early 1960s. Heat treatment (calcination) of such supports can control the number and type of surface hydroxyl groups and indirectly the amount and distribution of transition metal atoms anchored to the surface. The most commonly used Ziegler-Natta catalyst of this type is... [Pg.61]

Catalysts based on 7r-allylic derivatives of transition metals supported on alumina, silica or silica-alumina gels exhibit generally enhanced activity by comparison with their unsupported counterparts, while the stereospecificity depends on the nature of the catalyst carrier. For instance, Cr(All)3, which predominantly produces 1,2-polybutadiene [137], becomes a stereospecific catalyst for the formation of trans- 1,4-polybutadiene when supported on silica or silica-alumina gel and for the formation of cis- 1,4-polybutadiene when supported on alumina [148]. However, an increase in the content of cis-1,4 monomeric units in polybutadiene with increasing silica concentration in n-allylnickel-alumina-silica catalysts has been observed [149]. [Pg.295]

There are also catalysts that lack any apparent source of metal-carbon bonds. These catalysts include the aforementioned alumina- and silica-sup-ported transition metal oxides (which, in principle, do not demand any activation by organometallic compounds), and also several group 6-8 transition metal chlorides (soluble in hydrocarbons or chlorohydrocarbons), most typically RuC13. Some of these transition metal halides require activation by a cocatalyst of the Lewis acid type (e.g. A1C13, GaBr3, TiCU) [66,67], Noble metal chlorides may be used in alcoholic solvents or in water containing emulsifiers [68]. [Pg.344]

Transition metal nanoparticles supported on different substrates are used as catalysts for different reactions, such as hydrogenations and enantioselective-synthesis of organic compounds, oxidations and epoxidations, reduction, and decomposition [24,25], Among the supports that have been applied in the preparation of supported transition metal nanoparticles are active carbon, silica, titanium dioxide, and alumina. [Pg.64]

Among the supports that have been used in the preparation of supported transition metal nanoparticles are carbon, silica, alumina, titanium dioxide, and polymeric supports [57], and the most frequently used support is alumina [56], These supports normally produce an effect on the catalytic activity of the metallic nanoparticles supported on the amorphous material [60], In Chapter 3, different methods for the preparation of metallic catalysts supported on amorphous solids were described [61-71],... [Pg.430]

J. Haber Crystallography of Catalyst Types Structural properties of metals and their substitutional and interstitial alloys, transition metal oxides as well as alumina, silica, aluminosilicates and phosphates are discussed. Implications of point and extended defects for catalysis are emphasized and the problem of the structure and composition of the surface as compared to the bulk is considered. [Pg.215]

The reactions are catalyzed by transition metals (cobalt, iron, and ruthenium) on high-surface-area silica, alumina, or zeolite supports. However, the exact chemical identity of the catalysts is unknown, and their characterization presents challenges as these transformations are carried out under very harsh reaction conditions. Typically, the Fischer-Tropsch process is operated in the temperature range of 150°C-300°C and in the pressure range of one to several tens of atmospheres [66], Thus, the entire process is costly and inefficient and even produces waste [67]. Hence, development of more economical and sustainable strategies for the gas-to-liquid conversion of methane is highly desirable. [Pg.368]


See other pages where Silica-alumina/transition metal catalyst is mentioned: [Pg.749]    [Pg.753]    [Pg.26]    [Pg.61]    [Pg.212]    [Pg.492]    [Pg.349]    [Pg.2915]    [Pg.159]    [Pg.299]    [Pg.13]    [Pg.2702]    [Pg.12]    [Pg.97]    [Pg.96]    [Pg.113]    [Pg.273]    [Pg.337]    [Pg.146]    [Pg.18]    [Pg.329]    [Pg.329]    [Pg.273]    [Pg.26]    [Pg.60]    [Pg.91]    [Pg.341]    [Pg.171]    [Pg.188]    [Pg.87]   


SEARCH



Silica-alumina

Silica-alumina catalyst

Silica-alumina catalysts catalyst

Silica-metal

Transition catalyst

© 2024 chempedia.info