Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Shock deformation

Samples are most frequently shock deformed under laboratory conditions utilizing either explosive or gun-launched flyer (driver) plates. Given sufficient lateral extent and assembly thickness, a sample may be shocked in a onedimensional strain manner such that the sample experiences concurrently uniaxial-strain loading and unloading. Based on the reproducibility of projectile launch velocity and impact planarity, convenience of use, and ability to perform controlled oblique impact (such as for pressure-shear studies) guns have become the method of choice for many material equation-of-state and shock-recovery studies [21], [22]. [Pg.194]

P.S. Follansbee and G.T. Gray III, The Response of Single Crystal and Polycrystal Nickel to Quasi-Static and Shock Deformation, in Advances in Plasticity 1989 (edited by A.S. Khan and M. Tokuda), Pergamon Press, Oxford, 1989, pp. 385-388. [Pg.213]

L.E. Murr, Effects of Peak Pressure, Pulse Duration, and Repeated Loading on the Residual Structure and Properties of Shock Deformed Metals and Alloys, in Shock Waves and High-Strain-Rate Phenomena in Metals (edited by M.A. Meyers and L.E. Murr), Plenum, New York, 1981, 753 pp. [Pg.215]

D.E. Grady and J.R. Asay, Calculation of Thermal Trapping in Shock-Deformation of Aluminum, J. Appl. Phys. 53, 7350 (1982). [Pg.258]

But, there is no need to rely on hugonium. The theory and practice of the deformation of solids under other, less intense, loadings are well developed and show that the fluidlike flow of shock deformation is the expected consequence of the motion of defects in response to applied shear stresses that exceed the shear strength of solids. In most shock loadings, the shear stresses are well in excess of that shear strength and there is certainly ample theory and experiment to qualitatively identify overall features of the defect genera-... [Pg.4]

We can be qualitatively certain that the fluidlike flow of shock deformation is a consequence of motion of defects. We cannot be quantitatively certain as to the significant, detailed descriptions and consequences of these defects. Indeed, the principal unfinished business of shock-compression science is the scientific description of the defective solid in all its manifestations. [Pg.5]

The defect question delineates solid behavior from liquid behavior. In liquid deformation, there is no fundamental need for an unusual deformation mechanism to explain the observed shock deformation. There may be superficial, macroscopic similarities between the shock deformation of solids and fluids, but the fundamental deformation questions differ in the two cases. Fluids may, in fact, be subjected to intense transient viscous shear stresses that can cause mechanically induced defects, but first-order behaviors do not require defects to provide a fundamental basis for interpretation of mechanical response data. [Pg.5]

This statement represents an apt, terse description of the elastic-plastic shock-deformation process within the catastrophic shock paradigm. [Pg.34]

Fig. 5.1. The electrostatic configurations of the Neilson-Benedick three-zone model describe a piezoelectric solid subject to elastic-inelastic shock deformation which divides the crystal into three distinct zones. Zone 1, ahead of the elastic wave, is unstressed. Zone 2 is elastically stressed at the Hugoniot elastic limit. Zone 3 is isotropically pressurized to the input pressure value (after Graham [74G01]). Fig. 5.1. The electrostatic configurations of the Neilson-Benedick three-zone model describe a piezoelectric solid subject to elastic-inelastic shock deformation which divides the crystal into three distinct zones. Zone 1, ahead of the elastic wave, is unstressed. Zone 2 is elastically stressed at the Hugoniot elastic limit. Zone 3 is isotropically pressurized to the input pressure value (after Graham [74G01]).
Gupta and his students have developed procedures for determining the elastic and plastic contributions to shock-deformed metals. The work explicitly recognizes that the metal sample is an inclusion in a host material which may act to cause local deformation unique to the particular host [83G01, 87G01]. [Pg.128]

Finally, the phenomenon of shock-induced polarization represents perhaps the most distinctive phenomenon exhibited by shock-compressed matter. The phenomenon has no counterpart under other environments. The delineation of the details of the phenomenon provides an unusual insight into shock-deformation processes in shock-loading fronts. Description of the phenomenon appears to require overt attention to a catastrophic description of shock-compressed matter. In the author s opinion, a study of shock-induced polarization represents perhaps the most intriguing phenomenon observed in the field. In polymers, the author has characterized the effect as an electrical-to-chemical investigation [82G02]. [Pg.138]

The sample eapsule is plaeed in a tight-fitting 4340 steel fixture that serves to support the eopper eapsule. Pressure from the detonation of the explosive is transmitted to the eopper eapsule through a mild steel driver plate. This plate is also lapped optically flat on both surfaces. The mild steel acts to shape the pressure pulse due to the 13 GPa structural phase transition. With proper choice of the diameter of the driver plate and beveled interior opening of the steel fixture, shock deformation of the driver plate acts to seal the capsule within the fixture. [Pg.152]

In one of the most significant observations, small amounts of recrystallized material were observed in rutile at shock pressure of 16 GPa and 500 °C. Earlier studies in which shock-modified rutile were annealed showed that recovery was preferred to recrystallization. Such recrystallization is characteristic of heavily deformed ceramics. There has been speculation that, as the dislocation density increases, amorphous materials would be produced by shock deformation. Apparently, the behavior actually observed is that of recrystallization there is no evidence in any of the work for the formation of amorphous materials due to shock modification. Similar recrystallization behavior has also been observed in shock-modified zirconia. [Pg.168]

It has been observed in moving from the simplest cases to the more complex cases that, even in the simplest situation of elastic shock deformation, the observed effects can be considerably more complex than would be anticipated from extrapolation from tow pressure, smalt signal studies carried out in more conventional solid state physics. There is typically a degree of connection to the conventional work, but complexities, usually associated with defects, enter the picture from unanticipated directions. [Pg.198]

Ashworth, and Hutchison, 1975 [11] made electron microscopic observations of the hydrous alteration products of olivine in an achondrite and in an ordinary chondrite. Their conclusion was that the Nakhla achondrite, and possibly the Weston chondrite, contain water of extraterrestrial origin which was mobilized by mild shock deformation. Carbonaceous chondrites are believed to be unaltered material left over from the formation of the solar system. They contain substantial amounts of reduced carbon and of water in the form of hydroxyl ions. The oxidation state of iron in some carbonaceous chondrites has been determined by means of Moess-bauer spectroscopy, and it is demonstrated that there is a correlation between the oxidation state of iron and the content of water and reduced carbon in the meteorites (Roy-Poulsen et al., 1981 [284]). [Pg.126]


See other pages where Shock deformation is mentioned: [Pg.76]    [Pg.189]    [Pg.191]    [Pg.111]    [Pg.112]    [Pg.5]    [Pg.36]    [Pg.50]    [Pg.145]    [Pg.145]    [Pg.160]    [Pg.168]    [Pg.198]    [Pg.1260]    [Pg.233]    [Pg.45]    [Pg.95]    [Pg.165]    [Pg.166]    [Pg.360]    [Pg.47]    [Pg.49]    [Pg.72]    [Pg.172]    [Pg.1289]    [Pg.177]   
See also in sourсe #XX -- [ Pg.177 ]




SEARCH



© 2024 chempedia.info