Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sharpless reagent, modified

The modified Sharpless reagent was also successfully applied288 for the asymmetric oxidation of a series of 1,3-dithiolanes 248 to their S-monooxides 249 (equation 134). It was observed that the optical induction on sulphur (e.e. from 68 to 83%) is not significantly affected by the substituents R1 and R2. Asymmetric oxidation of a few aryl methyl sulphides by organic hydroperoxides in the presence of a catalytic amount of the optically active Schiff base-oxovanadium(IV) complexes gave the corresponding sulphoxides with e.e. lower than 40%289. [Pg.291]

TABLE 4-1. Asymmetric Epoxidation of Allylic Alcohols by Sharpless Reagents (Method A) and by the Modified Sharpless Reagents (Method B)... [Pg.201]

G. Kinetic Resolution Using a Modified Sharpless Reagent. 120... [Pg.105]

The Sharpless reagent, i.e. Ti(OPr-i)4/TBHP/diethyl tartrate, has been tested in the asymmetric BV oxidation of mono and bicyclic butanones . Conversions are low in all cases and ee values range from moderate to good. The best result has been obtained with the most bulky bicyclic ketone of the series, oxidized to the corresponding lactone with ee values up to 75%, using (+)-diethyl tartrate as ligand (equation 79). The use of a modified Sharpless reagent, based on Ti-TADDOL catalyst , increased the reaction rates, but decreased the enantiomeric excesses . ... [Pg.1113]

The enantioselective chemical and enzymatic oxidations of sulfides [86, 94] have also received many interesting developments. High e.e. values have been obtained independently by Kagan [103,104] and Modena [105] via modified Sharpless reagents and by Davis s group [106], which used various chiral oxaziridines. [Pg.127]

Chiral sulfoxides (12, 92). Kagan et al.3 have reviewed the asymmetric oxidation of sulfides by a water-modified Sharpless reagent. Optical yields are generally highest in the oxidation of aryl methyl sulfides (—75-90%). [Pg.53]

The oxidation of sulfides to sulfoxides by TBHP in the presence of Mo and V catalysts has been extensively studied.230,256 A modified Sharpless reagent,243 i.e. Ti(OPr )4/2 diethyl tartrate/1 H20, was used for the asymmetric oxidation of prochiral sulfides to sulfoxides with enantiomeric excess greater than 90% (equation 82).160,257... [Pg.346]

The Orsay group found serendipitously that methyl p-tolyl sulfide was oxidized to methyl p-toly 1 sulfoxide with high enantiomeric purity (80-90% ee) when the Sharpless reagent was modified by addition of 1 mole equiv. of water [16,17]. The story of this discovery was described in a review [19], Sharpless conditions gave racemic sulfoxide and sulfone. Careful optimization of the stoichiometry of the titanium complex in the oxidation of p-tolyl sulfide led to the selection of Ti(0iPr)4/(7 ,7 )-DET/H20 (1 2 1) combination as the standard system [ 17]. In the beginning of their investigations, the standard conditions implied a stoichiometric amount of the chiral titanium complex with respect to the prochiral sulfide [16,17,20-23]. Later, proper conditions were found, which decreased the amount of the titanium complex without too much alteration of the enantioselectivity [24,25],... [Pg.328]

Chiral sulfoxides or selenoxides.1 This oxaziridine (1) is generally more effective than the modified Sharpless reagent of Kagan (13, 52) for enantioselective oxidation of alkyl aryl sulfides or selenides to the corresponding sulfoxides or selenoxides. The polar Cl groups of 1 improve both rate and the enantioselectivity. [Pg.120]

Preparative Methods conveniently prepared - by reaction of the magnesium enolate of r-butyl acetate (readily made with Bromomagnesium Diisopropylamide) with (-)-(lR,2S,5R)-Menthyl (S)-p-Toluenesulfinate (eq 1). It was also made in 91% yield by reacting a solution of Lithium Diisopropylamide with (R)-(+)-methyl p-tolyl sulfoxide and 7-butyl carbonate (eq 2). It should be noted that asymmetric oxidation of 7-butyl 2- p-tolylsulfinyl)acetate with a modified Sharpless reagent gave a... [Pg.168]

The original Sharpless reagent, a mixture of tetraisopropyl orthotitan-ate, (i ,/ )-diethyl tartrate, and tert-butyl hydroperoxide in the ratio 1 1 2 in dry dichloromethane or 1,2-dichloroethane [1025, is modified by adding 1 mol of water 224, 1029]. Such a reagent gives higher enantiomeric excesses. Of many sulfide oxidations that have been carried out, the conversion of methyl p-tolyl sulfide into the sulfoxide is shown in equation 565. [Pg.258]

Optically active sulfoxides can also be prepared by asymmetric oxidation of sulfides. However, numerous papers have reported very low enantioselectivity." Only one report, " using a modified Sharpless reagent, H20/Ti(0Pr )4/diethyl tartrate/BuKX)H, described asymmetric oxidation of alkyl aryl sulfoxides with good enantiomeric excesses 75 to 95%. [Pg.150]

A modified Sharpless reagent has been developed by Kagan [503, 814], Modena [502, 814] and their coworkers. This new catalyst is formed by mixing water, Ti(0/-Pr)4, and diethyltartrate in a ratio of 1/1/2. The modified catalyst promotes enantioselecfrve oxidation of arylalkylsulfides by fert-BuOOH, and chiral sulfoxides are produced with excellent enantiomeric excesses (> 90%). Lower selectivities are observed from dialkylsulfides. From (R,R) or (5 S)-diethyl tartrate, either sulfoxide enantiomer can be obtained. The use of cumene hydroperoxide as the oxidant may improve the enantioselectivity. Uemura and coworkers obtained similar results by replacing the tartrates in these complexes with binaph-thols [815],... [Pg.124]

Kinetic resolution of secondary allylic alcohols by Sharpless asymmetric epoxidation using fert-butylhydroperoxide in the presence of a chiral titanium-tartrate catalyst has been widely used in the synthesis of chiral natural products. As an extension of this synthetic procedure, the kinetic resolution of a-(2-furfuryl)alkylamides with a modified Sharpless reagent has been used . Thus treatment of racemic A-p-toluenesulphonyl-a-(2-furfuryl)ethylamine [( )-74] with fert-butylhydroperoxide, titanium isopropoxide [Ti(OPr-/)4], calcium hydride (CaHa), silica gel and L-(+)-diisopropyl tartrate [l-(+)-DIPT] gave (S)-Al-p-toluenesulphonyl-a-(2-furfuryl)ethylamine [(S)-74] in high chemical yield and enantiomeric excess . Similarly prepared were the (S)-Al-p-toluenesulphonyl-a-(2-furfuryl)-n-propylamine and other homologues of (S)-74 using l-(+)-D1PT. When D-(—)-DIPT was used, the enantiomers were formed . ... [Pg.120]

Asymmetric oxidation of 2,3-epoxy sulfides with (—)-(l), double stereodifferentiation, gives 2,3-epoxy sulfoxide diastereoiso-mers (eq 3). Lower de values were observed for the other epoxy sulfide enantiomer. The modified Sharpless reagent gave better de values (5.1 1) with the methyl sulfides. [Pg.437]

Aryl vinyl selenides (3) are oxidized by (—)-(l) to selenoxide intermediates which undergo elimination to chiral allenic sulfones (eq 6). Somewhat better ee values were observed using the modified Sharpless reagent (up to 38% ee). As3mimetric oxidation of cyclohexyl selenides by oxaziridine (—)-(l) give axially chiral cyclohexylidene derivatives in up to 83% ee (eq 7). ... [Pg.438]

It should also be mentioned that optically active 2-sulfamyloxaziridines (8) afforded high asymmetric induction for the oxidation of nonfunctionalized sulfides to sulfoxides (53-91% ee). The enantiose-lectivities exhibited by these reagents are comparable to, or in some cases better than, the modified Sharpless reagent reported by Kagan. [Pg.150]


See other pages where Sharpless reagent, modified is mentioned: [Pg.73]    [Pg.73]    [Pg.74]    [Pg.73]    [Pg.73]    [Pg.74]    [Pg.120]    [Pg.209]    [Pg.1097]    [Pg.868]    [Pg.1097]    [Pg.1113]    [Pg.267]    [Pg.210]    [Pg.440]    [Pg.559]    [Pg.111]    [Pg.210]    [Pg.295]    [Pg.390]    [Pg.469]    [Pg.351]   
See also in sourсe #XX -- [ Pg.120 ]

See also in sourсe #XX -- [ Pg.120 ]




SEARCH



Sharpless

Sharpless reagent

Sharpless reagent, water-modified

© 2024 chempedia.info