Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stirring and Shaking

If it is desired however, to carry out the less satisfactory Na2HP04 test for comparison with the oxine test for Mg, treat the acid solution with a little NH4C1, followed by dilute NH3 solution until basic, and add Na2HP04 solution. Shake and stir vigorously. A white crystalline precipitate of Mg(NH4)P04.6H20 indicates Mg. This precipitate sometimes separates slowly. [Pg.445]

The types of handling (weighing, rubbing, crushing, mixing, shaking, and stirring) turned out to have a minor influence on the exposure level. [Pg.566]

Schiff s Reagent. Dissolve 1 g. of rosaniline in 50 ml. of water with gentle warming. Cool, saturate with SO, add about i g. of animal charcoal, shake and filter make up to i litre with water. If the pink colour reappears on standing, add a few drops of SOj-water carefully with stirring until the colour Just disappears. [Pg.526]

Dissolve 2 drops of concentrated sulphuric acid in 2 ml. of the ester and add 1 - 5 g. of 3 5-dinitrobenzoic acid. If the b.p. of the ester is below 150°, refiux the mixture gently if the b.p. is above 150° heat the mixture, with frequent shaking at first, in an oil bath at about 150°. If the 3 5-dinitrobenzoic acid dissolves within 15 minutes, heat the mixture for 30 minutes, otherwise 60 minutes heating is required. Allow the reaction mixture to cool, dissolve it in 25 ml. of ether, and extract thoroughly with 5 per cent, sodium carbonate solution (ca. 25 ml.). Wash the ethereal solution with water, and remove the ether. Dissolve the residue (which is usually an oil) in 5 ml. of hot alcohol, add hot water cautiously until the 3 5-dinitrobenzoate commences to separate, cool and stir. Recrystallise the derivative from dilute alcohol the yield is... [Pg.393]

Dissolve 36 g. of p-toluidine in 85 ml. of concentrated hydrochloric acid and 85 ml. of water contained in a 750 ml. conical flask or beaker. Cool the mixture to 0° in an ice-salt bath with vigorous stirring or shaking and the addition of a httle crushed ice. The salt, p-toluidine hydrochloride, will separate as a finely-divided crystalline precipitate. Add during 10-15 minutes a solution of 24 g. of sodium nitrite in 50 ml. of water (1) shake or stir the solution well during the diazotisation, and keep the mixture at a temperature of 0-5° by the addition of a httle crushed ice from time to time. The hydrochloride wUl dissolve as the very soluble diazonium salt is formed when ah the nitrite solution has been introduced, the solution should contain a trace of free nitrous acid. Test with potassium iodide - starch paper (see Section IV,60). [Pg.600]

Chlorobenzene. Prepare a solution of phenyldiazonium chloride from 31 g. (30 -5 ml.) of aniUne, 85 ml. of concentrated hydrochloric acid, 85 ml, of water, and a solution of 24 g. of sodium nitrite in 50 ml. of water (for experimental details, see Section IV,60). Prepare cuprous chloride from 105 g. of crystallised copper sulphate (Section 11,50,1), and dissolve it in 170 ml. of concentrated hydrochloric acid. Add the cold phenyl diazonium chloride solution with shaking or stirring to the cold cuprous chloride solution allow the mixture to warm up to room temperature. Follow the experimental details given above for p-chlorotoluene. Wash the chlorobenzene separated from the steam distillate with 40 ml. of 10 per cent, sodium hydroxide solution (to remove phenol), then with water, dry with anhydrous calcium chloride or magnesium sulphate, and distil. Collect the chlorobenzene (a colourless liquid) at 131-133° (mainly 133°), The yield is 29 g. [Pg.601]

Into a 1-litre beaker, provided with a mechanical stirrer, place 36 - 8 g. (36 ml.) of aniline, 50 g. of sodium bicarbonate and 350 ml. of water cool to 12-15° by the addition of a little crushed ice. Stir the mixture, and introduce 85 g. of powdered, resublimed iodine in portions of 5-6 g, at intervals of 2-3 minutes so that all the iodine is added during 30 minutes. Continue stirring for 20-30 minutes, by which time the colour of the free iodine in the solution has practically disappeared and the reaction is complete. Filter the crude p-iodoaniline with suction on a Buchner funnel, drain as completely as possible, and dry it in the air. Save the filtrate for the recovery of the iodine (1). Place the crude product in a 750 ml. round-bottomed flask fitted with a reflux double surface condenser add 325 ml. of light petroleum, b.p. 60-80°, and heat in a water bath maintained at 75-80°. Shake the flask frequently and after about 15 minutes, slowly decant the clear hot solution into a beaker set in a freezing mixture of ice and salt, and stir constantly. The p-iodoaniline crystallises almost immediately in almost colourless needles filter and dry the crystals in the air. Return the filtrate to the flask for use in a second extraction as before (2). The yield of p-iodoaniline, m.p. 62-63°, is 60 g. [Pg.647]

Cautiously add 250 g. (136 ml.) of concentrated sulphuric acid in a thin stream and with stirring to 400 ml. of water contained in a 1 litre bolt-head or three-necked flask, and then dissolve 150 g. of sodium nitrate in the diluted acid. Cool in a bath of ice or iced water. Melt 94 g. of phenol with 20 ml. of water, and add this from a separatory funnel to the stirred mixture in the flask at such a rate that the temperature does not rise above 20°. Continue the stirring for a further 2 hours after all the phenol has been added. Pour oflF the mother liquid from the resinous mixture of nitro compounds. Melt the residue with 500 ml. of water, shake and allow the contents of the flask to settle. Pour oflF the wash liquor and repeat the washing at least two or three times to ensure the complete removal of any residual acid. Steam distil the mixture (Fig. II, 40, 1 or Fig. II, 41, 1) until no more o-nitrophenol passes over if the latter tends to solidify in the condenser, turn oflF the cooling water temporarily. Collect the distillate in cold water, filter at the pump, and drain thoroughly. Dry upon filter paper in the air. The yield of o-nitrophenol, m.p. 46° (1), is 50 g. [Pg.677]

Prepare acetophenonephenylhydrazone by warming a mixture of 20 g. of acetophenone (Section IV, 136) and 18 g. of phenylhydrazine on a water bath for 1 hour. Dissolve the hot mixture in 40 ml. of rectihed spirit, and shake or stir to induce crystallisation. Cool the mixture in ice, filter and wash with 12 ml. of rectified spirit. Dry in a vacuum desiccator over anhydrous calcium chloride for at least half an hour. The yield of phenylhydrazone, m.p. 105-106 , is 28 g. [Pg.852]

Emulsification is essential for the development of all types of skin- and hair-care preparations and a variety of makeup products. Emulsions (qv) are fine dispersions of one Hquid or semisoHd ia a second Hquid (the contiauous phase) with which the first substance is not miscible. Generally, one of the phases is water and the other phase is an oily substance oil-ia-water emulsions are identified as o/w water-ia-oil emulsions as w/o. When oil and water are mixed by shaking or stirring ia the absence of a surface-active agent, the two phases separate rapidly to minimize the iaterfacial energy. Maintenance of the dispersion of small droplets of the internal phase, a requirement for emulsification, is practical only by including at least one surface-active emulsifier ia the oil-and-water blend. [Pg.294]


See other pages where Stirring and Shaking is mentioned: [Pg.50]    [Pg.602]    [Pg.6]    [Pg.173]    [Pg.25]    [Pg.26]    [Pg.432]    [Pg.4]    [Pg.1110]    [Pg.372]    [Pg.393]    [Pg.1421]    [Pg.815]    [Pg.50]    [Pg.602]    [Pg.6]    [Pg.173]    [Pg.25]    [Pg.26]    [Pg.432]    [Pg.4]    [Pg.1110]    [Pg.372]    [Pg.393]    [Pg.1421]    [Pg.815]    [Pg.260]    [Pg.339]    [Pg.174]    [Pg.542]    [Pg.568]    [Pg.603]    [Pg.644]    [Pg.681]    [Pg.702]    [Pg.730]    [Pg.773]    [Pg.931]    [Pg.980]    [Pg.1006]    [Pg.1012]    [Pg.1113]    [Pg.27]    [Pg.51]    [Pg.101]    [Pg.162]    [Pg.173]    [Pg.173]    [Pg.188]    [Pg.468]    [Pg.66]   
See also in sourсe #XX -- [ Pg.46 ]




SEARCH



SHAKE

Shaking

© 2024 chempedia.info