Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Serine Catalytic triads

The utilization of an active site serine to cleave a peptide bond is common to a variety of enzymes referred to as serine proteases. Serine proteases are essential for activating the formation of a blood clot from fibrin. Fibrin and many of the other proteins involved in blood coagulation are present in the blood as inactive precursors or zymogens, which must be activated by proteolytic cleavage. Thrombin, the serine protease that converts fibrinogen to fibrin, has the same aspartate-histidine-serine catalytic triad found in chymotrypsin and trypsin. [Pg.832]

Sequence Oxyanton hole Active serine Catalytic triad ... [Pg.165]

Figure 11.6 A schematic view of the presumed binding mode of the tetrahedral transition state intermediate for the deacylation step. The four essential features of the serine proteinases are highlighted in yellow the catalytic triad, the oxyanion hole, the specificity pocket, and the unspecific main-chain substrate binding. Figure 11.6 A schematic view of the presumed binding mode of the tetrahedral transition state intermediate for the deacylation step. The four essential features of the serine proteinases are highlighted in yellow the catalytic triad, the oxyanion hole, the specificity pocket, and the unspecific main-chain substrate binding.
A closer examination of these essential residues, including the catalytic triad, reveals that they are all part of the same two loop regions in the two domains (Figure 11.10). The domains are oriented so that the ends of the two barrels that contain the Greek key crossover connection (described in Chapter 5) between p strands 3 and 4 face each other along the active site. The essential residues in the active site are in these two crossover connections and in the adjacent hairpin loops between p strands 5 and 6. Most of these essential residues are conserved between different members of the chymotrypsin superfamily. They are, of course, surrounded by other parts of the polypeptide chains, which provide minor modifications of the active site, specific for each particular serine proteinase. [Pg.212]

Serine proteinases such as chymotrypsin and subtilisin catalyze the cleavage of peptide bonds. Four features essential for catalysis are present in the three-dimensional structures of all serine proteinases a catalytic triad, an oxyanion binding site, a substrate specificity pocket, and a nonspecific binding site for polypeptide substrates. These four features, in a very similar arrangement, are present in both chymotrypsin and subtilisin even though they are achieved in the two enzymes in completely different ways by quite different three-dimensional structures. Chymotrypsin is built up from two p-barrel domains, whereas the subtilisin structure is of the a/p type. These two enzymes provide an example of convergent evolution where completely different loop regions, attached to different framework structures, form similar active sites. [Pg.219]

Carter, P, Wells, J.A. Dissecting the catalytic triad of a serine protease. Nature 332 564-568, 1988. [Pg.220]

Until recently, the catalytic role of Asp ° in trypsin and the other serine proteases had been surmised on the basis of its proximity to His in structures obtained from X-ray diffraction studies, but it had never been demonstrated with certainty in physical or chemical studies. As can be seen in Figure 16.17, Asp ° is buried at the active site and is normally inaccessible to chemical modifying reagents. In 1987, however, Charles Craik, William Rutter, and their colleagues used site-directed mutagenesis (see Chapter 13) to prepare a mutant trypsin with an asparagine in place of Asp °. This mutant trypsin possessed a hydrolytic activity with ester substrates only 1/10,000 that of native trypsin, demonstrating that Asp ° is indeed essential for catalysis and that its ability to immobilize and orient His is crucial to the function of the catalytic triad. [Pg.517]

The metabolic breakdown of triacylglycerols begins with their hydrolysis to yield glycerol plus fatty acids. The reaction is catalyzed by a lipase, whose mechanism of action is shown in Figure 29.2. The active site of the enzyme contains a catalytic triad of aspartic acid, histidine, and serine residues, which act cooperatively to provide the necessary acid and base catalysis for the individual steps. Hydrolysis is accomplished by two sequential nucleophilic acyl substitution reactions, one that covalently binds an acyl group to the side chain -OH of a serine residue on the enzyme and a second that frees the fatty acid from the enzyme. [Pg.1130]

Figure 29.2 MECHANISM Mechanism of action of lipase. The active site of the enzyme contains a catalytic triad of aspartic acid, histidine, and serine, which react cooperatively to carry out two nucleophilic acyl substitution reactions. Individual steps are explained in the text. Figure 29.2 MECHANISM Mechanism of action of lipase. The active site of the enzyme contains a catalytic triad of aspartic acid, histidine, and serine, which react cooperatively to carry out two nucleophilic acyl substitution reactions. Individual steps are explained in the text.
The elucidation of the X-ray structure of chymotrypsin (Ref. 1) and in a later stage of subtilisin (Ref. 2) revealed an active site with three crucial groups (Fig. 7.1)-the active serine, a neighboring histidine, and a buried aspartic acid. These three residues are frequently called the catalytic triad, and are designated here as Aspc Hisc Serc (where c indicates a catalytic residue). The identification of the location of the active-site groups and intense biochemical studies led to several mechanistic proposals for the action of serine proteases (see, for example, Refs. 1 and 2). However, it appears that without some way of translating the structural information to reaction-potential surfaces it is hard to discriminate between different alternative mechanisms. Thus it is instructive to use the procedure introduced in previous chapters and to examine the feasibility of different... [Pg.171]

Catalysis, specific acid, 163 Catalytic triad, 171,173 Cavity radius, of solute, 48-49 Charge-relay mechanism, see Serine proteases, charge-relay mechanism Charging processes, in solutions, 82, 83 Chemical bonding, 1,14 Chemical bonds, see also Valence bond model... [Pg.230]

The lipase (PAL) used in these studies is a hydrolase having the usual catalytic triad composed of aspartate, histidine, and serine [42] (Figure 2.6). Stereoselectivity is determined in the first step, which involves the formation of the oxyanion. Unfortunately, X-ray structural characterization of the (S)- and (J )-selective mutants are not available. However, consideration of the crystal structure of the WT lipase [42] is in itself illuminating. Surprisingly, it turned out that many of the mutants have amino acid exchanges remote from the active site [8,22,40]. [Pg.33]

The mechanism for the lipase-catalyzed reaction of an acid derivative with a nucleophile (alcohol, amine, or thiol) is known as a serine hydrolase mechanism (Scheme 7.2). The active site of the enzyme is constituted by a catalytic triad (serine, aspartic, and histidine residues). The serine residue accepts the acyl group of the ester, leading to an acyl-enzyme activated intermediate. This acyl-enzyme intermediate reacts with the nucleophile, an amine or ammonia in this case, to yield the final amide product and leading to the free biocatalyst, which can enter again into the catalytic cycle. A histidine residue, activated by an aspartate side chain, is responsible for the proton transference necessary for the catalysis. Another important factor is that the oxyanion hole, formed by different residues, is able to stabilize the negatively charged oxygen present in both the transition state and the tetrahedral intermediate. [Pg.172]

Fig. 3 A ribbon diagram of the HCV NS3/4A protease ICU1 (Yao et al, 1999). The serine protease domain is shown in cyan with the catalytic triad highlighted in yellow, and the helicase domain is... Fig. 3 A ribbon diagram of the HCV NS3/4A protease ICU1 (Yao et al, 1999). The serine protease domain is shown in cyan with the catalytic triad highlighted in yellow, and the helicase domain is...
This model clearly shows that the catalytic machinery involves a dyad of histidine and aspartate together with the oxyanion hole. Hence, it does not involve serine, which is the key amino acid in the hydrolytic activity of lipases, and, together with aspartate and histidine, constitutes the active site catalytic triad. This has been confirmed by constructing a mutant in which serine was replaced with alanine (Serl05Ala), and finding that it catalyzes the Michael additions even more efficiently than the wild-type enzyme (an example of induced catalytic promiscuity ) [105]. [Pg.113]

NS3 is a 631 amino acid protein, and its first 180 amino acids encode a serine protease of the chymotrypsin family (Figure 2.2A). It has a typical chymotrypsin-family fold consisting of two jS-barrels, with catalytic triad residues at the interface. His-57 and Asp-81 are contributed by the N-terminal jS-barrel and Ser-139 from the C-terminal jS-barrel. NS3 and closely related viral proteases are significantly smaller than other members of the chymotrypsin family, and many of the loops normally found between adjacent jS-strands in trypsin proteases are truncated in NS3 [31]. Probably... [Pg.70]

After the nucleophilic attack by the hydroxyl function of the active serine on the carbonyl group of the lactone, the formation of the acyl-enzyme unmasks a reactive hydroxybenzyl derivative and then the corresponding QM. The cyclic structure of the inhibitor prevents the QM from rapidly diffusing out of the active center. Substitution of a second nucleophile leads to an irreversible inhibition. The second nucleophile was shown to be a histidine residue in a-chymotrypsin28 and in urokinase.39 Thus, the action of a functionalized dihydrocoumarin results in the cross-linking of two of the most important residues of the protease catalytic triad. [Pg.363]

The outstanding inclusion ability and the carboxylic functions of host I raised the idea of co-erystallizing it with imidazole (Im) which, due to its versatile nature 114), is one of the frequently used components in enzyme active sites, generally presented by histidine. Formally, a system made of imidazole and an acid component may mimic two essential components of the so-called catalytic triad of the serine protease family of enzymes the acid function of Aspl02 and the imidazole nucleus of His57 115) (trypsin sequence numbering). The third (albeit essential) component of the triad corresponding to the alcohol function of Seri 95 was not considered in this attempt. This family of enzymes is of prime importance in metabolitic processes. [Pg.128]

Site-directed mutagenesis of catalytic triad serine... [Pg.297]


See other pages where Serine Catalytic triads is mentioned: [Pg.30]    [Pg.36]    [Pg.600]    [Pg.121]    [Pg.1]    [Pg.28]    [Pg.34]    [Pg.474]    [Pg.30]    [Pg.36]    [Pg.600]    [Pg.121]    [Pg.1]    [Pg.28]    [Pg.34]    [Pg.474]    [Pg.203]    [Pg.210]    [Pg.212]    [Pg.217]    [Pg.341]    [Pg.495]    [Pg.517]    [Pg.520]    [Pg.394]    [Pg.357]    [Pg.877]    [Pg.1286]    [Pg.99]    [Pg.103]    [Pg.203]    [Pg.12]    [Pg.359]    [Pg.300]    [Pg.28]    [Pg.31]    [Pg.301]    [Pg.306]   
See also in sourсe #XX -- [ Pg.262 ]




SEARCH



Catalytic serine

Catalytic triad

Catalytic triad of serine proteases

Serine proteases catalytic triad

Triad

© 2024 chempedia.info