Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Self energy many-electron

In general, a qualitatively correct description of the ground state of a closed-shell molecule is provided by a single Slater determinant. This is why semiempirical (one-determinant) self-consistent field (SCF) methods can be applied quite successfidly to the determination of ground-state properties such as geometries, vibrational frequencies, and relative energies. Many electronically excited states, however, contain more then one dominant configuration state function. The simplest description of an excited state is the orbital picture where one electron has been moved from an occupied to an... [Pg.359]

The pseudopotential is derived from an all-electron SIC-LDA atomic potential. The relaxation correction takes into account the relaxation of the electronic system upon the excitation of an electron [44]- The authors speculate that ... the ability of the SIRC potential to produce considerably better band structures than DFT-LDA may reflect an extra nonlocality in the SIRC pseudopotential, related to the nonlocality or orbital dependence in the SIC all-electron potential. In addition, it may mimic some of the energy and the non-local space dependence of the self-energy operator occurring in the GW approximation of the electronic many body problem [45]. [Pg.2209]

There are several things known about the exact behavior of Vxc(r) and it should be noted that the presently used functionals violate many, if not most, of these conditions. Two of the most dramatic failures are (a) in HF theory, the exchange terms exactly cancel the self-interaction of electrons contained in the Coulomb term. In exact DFT, this must also be so, but in approximate DFT, there is a sizeable self-repulsion error (b) the correct KS potential must decay as 1/r for long distances but in approximate DFT it does not, and it decays much too quickly. As a consequence, weak interactions are not well described by DFT and orbital energies are much too high (5-6 eV) compared to the exact values. [Pg.147]

The XC energy represents the correction to the Coulomb energy for the self-energy of an electron in a many-electron system. The latter is due to both the direct self-energy of the electron as well as the redistribution of electronic density around each electron because of the Pauli exclusion principle and the Coulomb interaction. As an example, we now discuss the case of Fermi hole and the exchange energy in Hartree-Fock (HF) theory [16]. For brevity, we restrict ourselves to closed-shell cases. [Pg.89]

For many ionization energies and electron affinities, diagonal selfenergy approximations are inappropriate. Methods with nondiagonal self-energies allow Dyson orbitals to be written as linear combinations of reference-state orbitals. In most of these approximations, combinations of canonical, Hartree-Fock orbitals are used for this purpose, i.e. [Pg.140]

In this section, we describe our model, and give a brief, self-contained account on the equations of the non-equilibrium Green function formalism. This is closely related to the electron and particle-hole propagators, which have been at the heart of Jens electronic structure research [7,8]. For more detailed and more general analysis, see some of the many excellent references [9-15]. We restrict ourselves to the study of stationary transport, and work in energy representation. We assume the existence of a well-defined self-energy. The aim is to solve the Dyson and the Keldysh equations for the electronic Green functions ... [Pg.25]

Many-body perturbation theory (MBPT) for periodic electron systems produces many terms. All but the first-order term (the exchange term) diverges for the electron gas and metallic systems. This behavior holds for both the total and self-energy. Partial summations of these MBPT terms must be made to obtain finite results. It is a well-known fact that the sum of the most divergent terms in a perturbation series, when convergent, leads often to remarkably accurate results [9-11]. [Pg.39]

The method of many-electron Sturmian basis functions is applied to molecnles. The basis potential is chosen to be the attractive Conlomb potential of the nnclei in the molecnle. When such basis functions are used, the kinetic energy term vanishes from the many-electron secular equation, the matrix representation of the nnclear attraction potential is diagonal, the Slater exponents are automatically optimized, convergence is rapid, and a solution to the many-electron Schrodinger eqeuation, including correlation, is obtained directly, without the use ofthe self-consistent field approximation. [Pg.19]

The determination of the ground state energy and the ground state electron density distribution of a many-electron system in a fixed external potential is a problem of major importance in chemistry and physics. For a given Hamiltonian and for specified boundary conditions, it is possible in principle to obtain directly numerical solutions of the Schrodinger equation. Even with current generations of computers, this is not feasible in practice for systems of large total number of electrons. Of course, a variety of alternative methods, such as self-consistent mean field theories, also exist. However, these are approximate. [Pg.33]

Methods are introduced for generating many-electron Sturmian basis sets using the actual external potential experienced by an N-electron system, i.e. the attractive potential of the nuclei. When such basis sets are employed, very few basis functions are needed for an accurate representation of the system the kinetic energy term disappears from the secular equation solution of the secular equation provides automatically an optimal basis set and a solution to the many-electron problem is found directly, including electron correlation, and without the self-consistent field approximation. In the case of molecules, the momentum-space hyperspherical harmonic methods of Fock, Shibuya and Wulfman are shown to be very well suited to the construction of many-electron Sturmian basis functions. [Pg.201]

Now we have written down a wave function appropriate for use in the case where H = h(i). In HF theory, we make some simplifications so many-electron atoms and molecules can be treated this way. By tacitly assuming that each electron moves in a percieved electric field generated by the stationary nuclei and the average spatial distribution of all the other electrons, it essentially becomes an independant-electron problem. The HF Self Consistent Field procedure (SCF) will be bent on constructing each x(x) to give the lowest energy. [Pg.5]

The simplest way to gain a better appreciation for tlie hole function is to consider the case of a one-electron system. Obviously, the Lh.s. of Eq. (8.6) must be zero in that case. However, just as obviously, the first term on the r.h.s. of Eq. (8.6) is not zero, since p must be greater than or equal to zero throughout space. In die one-electron case, it should be clear that h is simply the negative of the density, but in die many-electron case, the exact form of the hole function can rarely be established. Besides die self-interaction error, hole functions in many-electron systems account for exchange and correlation energy as well. [Pg.251]

The BW form of PT is formally very simple. However, the operators in it depend on the exact energy of the state studied. This requires a self-consistency procedure and limits its application to one energy level at a time. The Rayleigh-Schrodinger (RS) PT does not have these shortcomings, and is, therefore, a more suitable basis for many-body calculations of many-electron systems than the BW form of the theory, it is applicable to a group of levels simultaneously. [Pg.20]

Analytic, exact solutions cannot be obtained except for the simplest systems, i.e. hydrogen-like atoms with just one electron and one nucleus. Good approximate solutions can be found by means of the self-consistent field (SCF) method, the details of which need not concern us. If all the electrons have been explicitly considered in the Hamiltonian, the wave functions V, will be many-electron functions V, will contain the coordinates of all the electrons, and a complete electron density map can be obtained by plotting Vf. The associated energies E, are the energy states of the molecule (see Section 2.6) the lowest will be the ground state , and the calculated energy differences En — El should match the spectroscopic transitions in the electronic spectrum. [Pg.212]

In the last configuration a particle-hole pair is considered in the system promoting an electron from the valence band (i = h) to a conduction band (i = e). For this reason the method is also called constrained DFT. The excitation energy of the many-electron system is the difference in total energy between two self-consistent calculations with the occupations described above, i.e. ... [Pg.210]


See other pages where Self energy many-electron is mentioned: [Pg.136]    [Pg.29]    [Pg.710]    [Pg.55]    [Pg.18]    [Pg.159]    [Pg.108]    [Pg.220]    [Pg.39]    [Pg.129]    [Pg.345]    [Pg.23]    [Pg.198]    [Pg.339]    [Pg.228]    [Pg.202]    [Pg.167]    [Pg.286]    [Pg.549]    [Pg.317]    [Pg.479]    [Pg.48]    [Pg.11]    [Pg.57]    [Pg.136]    [Pg.631]    [Pg.44]    [Pg.101]    [Pg.167]    [Pg.269]    [Pg.164]    [Pg.213]    [Pg.251]    [Pg.270]    [Pg.359]   
See also in sourсe #XX -- [ Pg.178 ]




SEARCH



Electronic self energy

Self-energy

© 2024 chempedia.info